
Welcome!

1

Course Outline

Donald Grasse, Executive Educational Instructor, (dgrasse@uchicago.edu)

Pavan Prathuru, Teaching Assistant, (pavanprathuru@uchicago.edu)

2

Course Outline

This course is designed to teach students the fundamentals of databases

and database management. After completing the course, students will be

able to:

• Design, implement, and manage relational databases effectively

• Write and optimize SQL queries for data retrieval and analysis

• Understand database administration, ensuring data integrity and

optimal performance

• Apply principles in real-world scenarios

3

Why the Relational Database (November 5)

• What is a database and why do we structure them the way we do?

• An introduction to the relational model, the most widely used model

used to organize data within a database

4

Mathematical and Logical Foundations of DBMS (November

6)

• Effectively interacting with, and querying, databases is ultimately

about formal logic, organization, and indexing.

• To understand the method to DBMS, we will study set theory, a

branch of mathematics that underpins nearly the rest of the entire

course

• Homework: Set Theory Problem Set (Due End of Next Day)

5

Data Modeling (November 7)

• Conceptually, databases can be thought of in many ways, which has

stakes for how they are organized

• We will study one of the most important tools for data modeling -

the Entity Relationship model - and the rules for structuring a

database to make sure it is efficient and easy to use

• Homework: Build Your Own E-R Diagram (Due End of Next Day)

6

Data Querying: Relational Algebra (November 8)

• The heart of database theory - and one of the tools that led to the

development of relational database - is relational algebra, a defined

algebraic structure based on set theory used for querying databases.

• Irrespective of how you will query databases in the future, relational

algebra will be the foundation of your query

• Homework: Relational Algebra Problem Set (Due End of Next Day)

7

Synthesis and Assessment (November 9)

• How do set theory, databases, relational algebra, and data modeling

fit together?

• This class will focus on synthesizing these ideas and placing the

concepts in conversation with one another

• Quiz 1: Due End of Day

8

Data Querying in SQL (November 12)

• This class will bridge the theory of querying databases with practice

• We will learn the Structured Query Language (SQL) - the most

important Database Language for DDL and DML

• In Class Activity: Producing SQL Queries

9

Data Security (November 13)

• Databases are incredibly valuable - sometimes so valuable that other

actors who are not authorized access attempt to seize information

from them

• This class will focus on key threats to data security, and how

database administrators can help protect data

10

Data Governance (November 14)

• Data has to be managed appropriately during its whole life cycle -

from the acquisition stage to the disposal stage

• This class will focus on data governance, an important and distinct

concept from data management, including the best practices for

administrators

• Homework: Security and Governance Problem Set (Due End of

Next Day)

11

Beyond SQL (November 15)

• SQL is the most common - but not the only - tool for working with

databases

• This class will focus on what is beyond SQL - including NoSQL and

Postrelational databases

12

Synthesis and Assessment (November 16)

• Putting together the big picture

• Quiz 2: Due End of Next Day

13

Grading

The breakdown of grades will be as follows:

• Homework (60%)

• Quizzes (30%)

• Participation (10%)

14

Integrity

Each student is expected to turn in their own work. While collaboration is

welcomed - and indeed expected - students should not directly copy their

answers from either their peers or from online sources, including Artificial

Intelligence (AI). Evidence of plagiarism is grounds for a failing grade on

the assignment that was misrepresented or produced dishonestly.

15

Course Philosophy

• My goals for you:

• Grasp the core concepts and underpinnings of those concepts to

apply them tomorrow

• Master the analytical frameworks so you can apply them in real life

and as a spring board to branch into other techniques

• My method:

• Active learning though scaffolding

16

Course Philosophy

• My goals for you:

• Grasp the core concepts and underpinnings of those concepts to

apply them tomorrow

• Master the analytical frameworks so you can apply them in real life

and as a spring board to branch into other techniques

• My method:

• Active learning though scaffolding

16

Course Philosophy

• My goals for you:

• Grasp the core concepts and underpinnings of those concepts to

apply them tomorrow

• Master the analytical frameworks so you can apply them in real life

and as a spring board to branch into other techniques

• My method:

• Active learning though scaffolding

16

Course Philosophy

• My goals for you:

• Grasp the core concepts and underpinnings of those concepts to

apply them tomorrow

• Master the analytical frameworks so you can apply them in real life

and as a spring board to branch into other techniques

• My method:

• Active learning though scaffolding

16

Lecture Overview

Today, we are going to:

• Understand where, when, and why database management comes

into play

• Explain, at a high level, how DBMS operates, and its key functions

• Understand and explain the basis of the relational model

17

Lecture Overview

Today, we are going to:

• Understand where, when, and why database management comes

into play

• Explain, at a high level, how DBMS operates, and its key functions

• Understand and explain the basis of the relational model

17

Lecture Overview

Today, we are going to:

• Understand where, when, and why database management comes

into play

• Explain, at a high level, how DBMS operates, and its key functions

• Understand and explain the basis of the relational model

17

Introduction

• A database-management system (DBMS) is a collection of

interrelated data and a set of programs to access those data

• A database is a collection of relevant information

• The goal in DBMS is to provide a way to store and retrieve database

information in an efficient and convenient way

• We have to achieve this while also protecting the data from threats

and crashes to prevent anomalous results

18

Introduction

• A database-management system (DBMS) is a collection of

interrelated data and a set of programs to access those data

• A database is a collection of relevant information

• The goal in DBMS is to provide a way to store and retrieve database

information in an efficient and convenient way

• We have to achieve this while also protecting the data from threats

and crashes to prevent anomalous results

18

Introduction

• A database-management system (DBMS) is a collection of

interrelated data and a set of programs to access those data

• A database is a collection of relevant information

• The goal in DBMS is to provide a way to store and retrieve database

information in an efficient and convenient way

• We have to achieve this while also protecting the data from threats

and crashes to prevent anomalous results

18

Introduction

• A database-management system (DBMS) is a collection of

interrelated data and a set of programs to access those data

• A database is a collection of relevant information

• The goal in DBMS is to provide a way to store and retrieve database

information in an efficient and convenient way

• We have to achieve this while also protecting the data from threats

and crashes to prevent anomalous results

18

History of Database Systems

• Before diving in, its important to understand how we got here

• This helps clarify why things have evolved the way they did, and will

give you some insight into how things could change in the future

19

History of Database Systems

• Before diving in, its important to understand how we got here

• This helps clarify why things have evolved the way they did, and will

give you some insight into how things could change in the future

19

History of Database Systems

• Information processing has driven computer growth, not the other

way around

• Punched carts were an early form of automation to collect census

data in the United States

20

History of Database Systems

• Information processing has driven computer growth, not the other

way around

• Punched carts were an early form of automation to collect census

data in the United States

20

History of Database Systems

Herman Hollerith

21

History of Database Systems

• Early 1960s: Tapes and punch cards

• Sequencing was essential

• If someone got a raise that would be read into a new tape using the

old tape, paying attention to the sequence of entry

• The new tape would become the master tape

22

History of Database Systems

• Early 1960s: Tapes and punch cards

• Sequencing was essential

• If someone got a raise that would be read into a new tape using the

old tape, paying attention to the sequence of entry

• The new tape would become the master tape

22

History of Database Systems

• Early 1960s: Tapes and punch cards

• Sequencing was essential

• If someone got a raise that would be read into a new tape using the

old tape, paying attention to the sequence of entry

• The new tape would become the master tape

22

History of Database Systems

• Early 1960s: Tapes and punch cards

• Sequencing was essential

• If someone got a raise that would be read into a new tape using the

old tape, paying attention to the sequence of entry

• The new tape would become the master tape

22

History of Database Systems

• Late 1960s: Hard disks

• Sequencing less important, data could be stored on the hard disk

and accessed anywhere

• Lists and trees could be saved, allowing for hierarchical databases

23

History of Database Systems

• Late 1960s: Hard disks

• Sequencing less important, data could be stored on the hard disk

and accessed anywhere

• Lists and trees could be saved, allowing for hierarchical databases

23

History of Database Systems

• Late 1960s: Hard disks

• Sequencing less important, data could be stored on the hard disk

and accessed anywhere

• Lists and trees could be saved, allowing for hierarchical databases

23

History of Database Systems

Edward F Codd defines the relational model and algebra

24

History of Database Systems

• 1980s: Relational databases become competitive

• IBM research developed a way to make relational databases efficient

• The programmer was free to work at the logical level, with most

efficiently related matters already being accounted for by relational

model

• Since becoming dominant in the 1980s, the relational model has

remained the most important and popular

25

History of Database Systems

• 1980s: Relational databases become competitive

• IBM research developed a way to make relational databases efficient

• The programmer was free to work at the logical level, with most

efficiently related matters already being accounted for by relational

model

• Since becoming dominant in the 1980s, the relational model has

remained the most important and popular

25

History of Database Systems

• 1980s: Relational databases become competitive

• IBM research developed a way to make relational databases efficient

• The programmer was free to work at the logical level, with most

efficiently related matters already being accounted for by relational

model

• Since becoming dominant in the 1980s, the relational model has

remained the most important and popular

25

History of Database Systems

• 1980s: Relational databases become competitive

• IBM research developed a way to make relational databases efficient

• The programmer was free to work at the logical level, with most

efficiently related matters already being accounted for by relational

model

• Since becoming dominant in the 1980s, the relational model has

remained the most important and popular

25

History of Database Systems

• The World Wide Web led to explosive database growth

• Database systems were deployed more extensively than ever before

• Database systems had to support Web interfaces to data, and had

to support high transaction-processing rates, as well as 24 × 7

availability

26

History of Database Systems

• The World Wide Web led to explosive database growth

• Database systems were deployed more extensively than ever before

• Database systems had to support Web interfaces to data, and had

to support high transaction-processing rates, as well as 24 × 7

availability

26

History of Database Systems

• The World Wide Web led to explosive database growth

• Database systems were deployed more extensively than ever before

• Database systems had to support Web interfaces to data, and had

to support high transaction-processing rates, as well as 24 × 7

availability

26

Database-Systems Applications

• Databases are an essential part of every enterprise today

• Database access became more direct overtime

• User interface hides this, but we interact with a database everyday

27

Database-Systems Applications

• Databases are an essential part of every enterprise today

• Database access became more direct overtime

• User interface hides this, but we interact with a database everyday

27

Database-Systems Applications

• Databases are an essential part of every enterprise today

• Database access became more direct overtime

• User interface hides this, but we interact with a database everyday

27

10 Minute Activity

• Talk in groups about a database that you interact with/interface

with OR that you may/plan to in the future

• Talk about how you think it may be organized to ensure security,

efficiency, and convenience

28

10 Minute Activity

• Talk in groups about a database that you interact with/interface

with OR that you may/plan to in the future

• Talk about how you think it may be organized to ensure security,

efficiency, and convenience

28

Database-Systems Applications

• Enterprise information

• Sales (customers, products, purchases)

• Accounting (payment, receipts, account balances)

• Human resources (payroll, employee demographics, benefits, hours

worked)

• Manufacturing (supply chain, inventory in warehouses and stores,

orders for items when you run out)

29

Database-Systems Applications

• Enterprise information

• Sales (customers, products, purchases)

• Accounting (payment, receipts, account balances)

• Human resources (payroll, employee demographics, benefits, hours

worked)

• Manufacturing (supply chain, inventory in warehouses and stores,

orders for items when you run out)

29

Database-Systems Applications

• Enterprise information

• Sales (customers, products, purchases)

• Accounting (payment, receipts, account balances)

• Human resources (payroll, employee demographics, benefits, hours

worked)

• Manufacturing (supply chain, inventory in warehouses and stores,

orders for items when you run out)

29

Database-Systems Applications

• Enterprise information

• Sales (customers, products, purchases)

• Accounting (payment, receipts, account balances)

• Human resources (payroll, employee demographics, benefits, hours

worked)

• Manufacturing (supply chain, inventory in warehouses and stores,

orders for items when you run out)

29

Database-Systems Applications

• Enterprise information

• Sales (customers, products, purchases)

• Accounting (payment, receipts, account balances)

• Human resources (payroll, employee demographics, benefits, hours

worked)

• Manufacturing (supply chain, inventory in warehouses and stores,

orders for items when you run out)

29

Database-Systems Applications

Financial information

• Banking (customer information, loans, accounts, transactions)

• Credit Card Transactions (individual purchases and monthly

statements)

• Finance (stocks, bonds, market data)

30

Database-Systems Applications

Financial information

• Banking (customer information, loans, accounts, transactions)

• Credit Card Transactions (individual purchases and monthly

statements)

• Finance (stocks, bonds, market data)

30

Database-Systems Applications

Financial information

• Banking (customer information, loans, accounts, transactions)

• Credit Card Transactions (individual purchases and monthly

statements)

• Finance (stocks, bonds, market data)

30

Database-Systems Applications

Other organizations and institutions

• Universities (student information, course registration, grades)

• Airlines (reservations, schedules, plane locations)

• Telecommunications (calls, monthly bills, customers)

31

Database-Systems Applications

Other organizations and institutions

• Universities (student information, course registration, grades)

• Airlines (reservations, schedules, plane locations)

• Telecommunications (calls, monthly bills, customers)

31

Database-Systems Applications

Other organizations and institutions

• Universities (student information, course registration, grades)

• Airlines (reservations, schedules, plane locations)

• Telecommunications (calls, monthly bills, customers)

31

Purpose of Database Systems

• File-processing systems dominated storage of information

• A collection of programs that store and manage files in computer

hard-disk

32

Purpose of Database Systems

• File-processing systems dominated storage of information

• A collection of programs that store and manage files in computer

hard-disk

32

File-processing systems

33

Purpose of Database Systems

The file processing system - despite its intuitive appeal - has some major

downsides, which will inspire why we use database systems

• Data redundancy and inconsistency

• Access

• Data Isolation

• Integrity problems

• Atomicity

• Concurrent-access Anomalies

• Security

34

Purpose of Database Systems

The file processing system - despite its intuitive appeal - has some major

downsides, which will inspire why we use database systems

• Data redundancy and inconsistency

• Access

• Data Isolation

• Integrity problems

• Atomicity

• Concurrent-access Anomalies

• Security

34

Purpose of Database Systems

The file processing system - despite its intuitive appeal - has some major

downsides, which will inspire why we use database systems

• Data redundancy and inconsistency

• Access

• Data Isolation

• Integrity problems

• Atomicity

• Concurrent-access Anomalies

• Security

34

Purpose of Database Systems

The file processing system - despite its intuitive appeal - has some major

downsides, which will inspire why we use database systems

• Data redundancy and inconsistency

• Access

• Data Isolation

• Integrity problems

• Atomicity

• Concurrent-access Anomalies

• Security

34

Purpose of Database Systems

The file processing system - despite its intuitive appeal - has some major

downsides, which will inspire why we use database systems

• Data redundancy and inconsistency

• Access

• Data Isolation

• Integrity problems

• Atomicity

• Concurrent-access Anomalies

• Security

34

Purpose of Database Systems

The file processing system - despite its intuitive appeal - has some major

downsides, which will inspire why we use database systems

• Data redundancy and inconsistency

• Access

• Data Isolation

• Integrity problems

• Atomicity

• Concurrent-access Anomalies

• Security

34

Purpose of Database Systems

The file processing system - despite its intuitive appeal - has some major

downsides, which will inspire why we use database systems

• Data redundancy and inconsistency

• Access

• Data Isolation

• Integrity problems

• Atomicity

• Concurrent-access Anomalies

• Security

34

• To highlight the problems with a file-processing system, we will use

the example of a university

• The University wants to

• Add new students, instructors, courses

• Register students

• Assign grades, GPAs, generate transcripts

35

• To highlight the problems with a file-processing system, we will use

the example of a university

• The University wants to

• Add new students, instructors, courses

• Register students

• Assign grades, GPAs, generate transcripts

35

• To highlight the problems with a file-processing system, we will use

the example of a university

• The University wants to

• Add new students, instructors, courses

• Register students

• Assign grades, GPAs, generate transcripts

35

• To highlight the problems with a file-processing system, we will use

the example of a university

• The University wants to

• Add new students, instructors, courses

• Register students

• Assign grades, GPAs, generate transcripts

35

• To highlight the problems with a file-processing system, we will use

the example of a university

• The University wants to

• Add new students, instructors, courses

• Register students

• Assign grades, GPAs, generate transcripts

35

Data redundancy and inconsistency

• Say a student is a double major in Music and Mathematics

• They became a double major their second year of college, and they

moved after freshman year

• Now the file from the Music Department has a different address

than the Mathematics Department

• Redundancy and inconsistency are costly!

36

Data redundancy and inconsistency

• Say a student is a double major in Music and Mathematics

• They became a double major their second year of college, and they

moved after freshman year

• Now the file from the Music Department has a different address

than the Mathematics Department

• Redundancy and inconsistency are costly!

36

Data redundancy and inconsistency

• Say a student is a double major in Music and Mathematics

• They became a double major their second year of college, and they

moved after freshman year

• Now the file from the Music Department has a different address

than the Mathematics Department

• Redundancy and inconsistency are costly!

36

Data redundancy and inconsistency

• Say a student is a double major in Music and Mathematics

• They became a double major their second year of college, and they

moved after freshman year

• Now the file from the Music Department has a different address

than the Mathematics Department

• Redundancy and inconsistency are costly!

36

Difficulty Accessing Data

• The University wants to send out mailers to students who have

parents that live far away to invite them to a visiting weekend.

• The IT department is asked to generate a list of these students, but

information is stored based on a file-processing system

• There is no easy way to accomplish this task!

37

Difficulty Accessing Data

• The University wants to send out mailers to students who have

parents that live far away to invite them to a visiting weekend.

• The IT department is asked to generate a list of these students, but

information is stored based on a file-processing system

• There is no easy way to accomplish this task!

37

Difficulty Accessing Data

• The University wants to send out mailers to students who have

parents that live far away to invite them to a visiting weekend.

• The IT department is asked to generate a list of these students, but

information is stored based on a file-processing system

• There is no easy way to accomplish this task!

37

Difficulty Accessing Data

• The IT department decides to write a script to generate a list of all

students, their parents addresses, and select only those students who

live far away

• But now, the University realizes it wants to send different mailers

based on whether students are upper or lower classman, so they

need separate lists based on credit hours

• You need a whole new script!

38

Difficulty Accessing Data

• The IT department decides to write a script to generate a list of all

students, their parents addresses, and select only those students who

live far away

• But now, the University realizes it wants to send different mailers

based on whether students are upper or lower classman, so they

need separate lists based on credit hours

• You need a whole new script!

38

Difficulty Accessing Data

• The IT department decides to write a script to generate a list of all

students, their parents addresses, and select only those students who

live far away

• But now, the University realizes it wants to send different mailers

based on whether students are upper or lower classman, so they

need separate lists based on credit hours

• You need a whole new script!

38

Data Isolation

• Sticking with the last example, you are compiling data from all

departments to generate the list of students

• The economics department has stored their data in .xls, the

psychology department in .xlxs, the public policy department in .csv

• The Music department has stored students as columns but nearly

every other department has stored them in rows

• Because data is scattered and stored differently, writing a new

application program to retrieve data is difficult

39

Data Isolation

• Sticking with the last example, you are compiling data from all

departments to generate the list of students

• The economics department has stored their data in .xls, the

psychology department in .xlxs, the public policy department in .csv

• The Music department has stored students as columns but nearly

every other department has stored them in rows

• Because data is scattered and stored differently, writing a new

application program to retrieve data is difficult

39

Data Isolation

• Sticking with the last example, you are compiling data from all

departments to generate the list of students

• The economics department has stored their data in .xls, the

psychology department in .xlxs, the public policy department in .csv

• The Music department has stored students as columns but nearly

every other department has stored them in rows

• Because data is scattered and stored differently, writing a new

application program to retrieve data is difficult

39

Data Isolation

• Sticking with the last example, you are compiling data from all

departments to generate the list of students

• The economics department has stored their data in .xls, the

psychology department in .xlxs, the public policy department in .csv

• The Music department has stored students as columns but nearly

every other department has stored them in rows

• Because data is scattered and stored differently, writing a new

application program to retrieve data is difficult

39

Integrity Problems

• Data values stored in a database must satisfy consistency constraints

• A consistency constraint is a requirement that a value can only be in

the database in a defined way

• A student cannot have negative credit hours

40

Integrity Problems

• Data values stored in a database must satisfy consistency constraints

• A consistency constraint is a requirement that a value can only be in

the database in a defined way

• A student cannot have negative credit hours

40

Integrity Problems

• Say the university required that budgets for a department never go

below zero (no deficit) and appropriate code was programmed into

their budgeting sheets by each department to allow this

• Now the University needs to save more, so the budget needs to be a

surplus (everyone needs 10 dollars left over)

• Updating the system for the new consistency constraint is a

nightmare

41

Integrity Problems

• Say the university required that budgets for a department never go

below zero (no deficit) and appropriate code was programmed into

their budgeting sheets by each department to allow this

• Now the University needs to save more, so the budget needs to be a

surplus (everyone needs 10 dollars left over)

• Updating the system for the new consistency constraint is a

nightmare

41

Integrity Problems

• Say the university required that budgets for a department never go

below zero (no deficit) and appropriate code was programmed into

their budgeting sheets by each department to allow this

• Now the University needs to save more, so the budget needs to be a

surplus (everyone needs 10 dollars left over)

• Updating the system for the new consistency constraint is a

nightmare

41

Atomicity

• Atomicity is the idea that an action should occur in its entirety or

not at all

• Say the History department transfers 500 dollars to the Music

departments budget

• The power goes out during the execution but everything boots back

up fairly quickly

• The funds may have left History, but not be credited to Music

42

Atomicity

• Atomicity is the idea that an action should occur in its entirety or

not at all

• Say the History department transfers 500 dollars to the Music

departments budget

• The power goes out during the execution but everything boots back

up fairly quickly

• The funds may have left History, but not be credited to Music

42

Atomicity

• Atomicity is the idea that an action should occur in its entirety or

not at all

• Say the History department transfers 500 dollars to the Music

departments budget

• The power goes out during the execution but everything boots back

up fairly quickly

• The funds may have left History, but not be credited to Music

42

Atomicity

• Atomicity is the idea that an action should occur in its entirety or

not at all

• Say the History department transfers 500 dollars to the Music

departments budget

• The power goes out during the execution but everything boots back

up fairly quickly

• The funds may have left History, but not be credited to Music

42

Concurrent-access Anomalies

• Two withdrawals at the same time

• Two registrations at the same time

43

Concurrent-access Anomalies

• Two withdrawals at the same time

• Two registrations at the same time

43

Security Problems

• Enforcing constraints is difficult

44

What do we do?

• Because of all of these problems, there have been great

advancements in designing databases that overcome these issues

45

View of Data

• A database system is a collection of interrelated data and a set of

programs that allow users to access and modify these data.

• A major purpose of a database system is to provide users with an

abstract view of the data

• The system hides certain details of how the data are stored or

maintained

46

View of Data

• A database system is a collection of interrelated data and a set of

programs that allow users to access and modify these data.

• A major purpose of a database system is to provide users with an

abstract view of the data

• The system hides certain details of how the data are stored or

maintained

46

View of Data

• A database system is a collection of interrelated data and a set of

programs that allow users to access and modify these data.

• A major purpose of a database system is to provide users with an

abstract view of the data

• The system hides certain details of how the data are stored or

maintained

46

Data Abstraction

• For the system to be usable, it must retrieve data efficiently

• The need for efficiency has created complexity, which means things

are hidden from the user to prevent them from being overwhelmed

47

Data Abstraction

• For the system to be usable, it must retrieve data efficiently

• The need for efficiency has created complexity, which means things

are hidden from the user to prevent them from being overwhelmed

47

Data Abstraction

• Physical level: how the data are actually stored

• Logical level: what data are stored and what are their relationships

• View level

48

Data Abstraction

• Physical level: how the data are actually stored

• Logical level: what data are stored and what are their relationships

• View level

48

Data Abstraction

• Physical level: how the data are actually stored

• Logical level: what data are stored and what are their relationships

• View level

48

Data Abstraction

49

Data Abstraction

CREATE TABLE (ID varchar(5), name varchar(10), dept name

varchar(10) salary numeric(8, 2))

50

Data Abstraction

• Physical: storage locations

• Logical: type definition

• View: who can see what

51

Data Abstraction

• Physical: storage locations

• Logical: type definition

• View: who can see what

51

Data Abstraction

• Physical: storage locations

• Logical: type definition

• View: who can see what

51

Instances and Schemas

• Schema: overall design of the database

• Instance: information stored at a particular moment in time

• Schema is the variable declaration

• Instance is what we observe at a point in time

52

Instances and Schemas

• Schema: overall design of the database

• Instance: information stored at a particular moment in time

• Schema is the variable declaration

• Instance is what we observe at a point in time

52

Instances and Schemas

• Schema: overall design of the database

• Instance: information stored at a particular moment in time

• Schema is the variable declaration

• Instance is what we observe at a point in time

52

Instances and Schemas

• Schema: overall design of the database

• Instance: information stored at a particular moment in time

• Schema is the variable declaration

• Instance is what we observe at a point in time

52

Data Models

• Data model: a conceptual tool for describing data, data

relationships, data semantics, and consistency constraints

• Model provides a way of describing the design of a database at the

physical, logical, and view levels

53

Data Models

• Data model: a conceptual tool for describing data, data

relationships, data semantics, and consistency constraints

• Model provides a way of describing the design of a database at the

physical, logical, and view levels

53

Data Models

• Relational model

• Entity-Relationship Model

• Object-Based Data Model

• Semistructured Data Model

54

Data Models

• Relational model

• Entity-Relationship Model

• Object-Based Data Model

• Semistructured Data Model

54

Data Models

• Relational model

• Entity-Relationship Model

• Object-Based Data Model

• Semistructured Data Model

54

Data Models

• Relational model

• Entity-Relationship Model

• Object-Based Data Model

• Semistructured Data Model

54

Relational model

• Uses a collection of tables to represent both data and the

relationships among those data

• Each column has a unique name, and may correspond to an attribute

• Tables are also called relations

• Most widely used

55

Relational model

• Uses a collection of tables to represent both data and the

relationships among those data

• Each column has a unique name, and may correspond to an attribute

• Tables are also called relations

• Most widely used

55

Relational model

• Uses a collection of tables to represent both data and the

relationships among those data

• Each column has a unique name, and may correspond to an attribute

• Tables are also called relations

• Most widely used

55

Relational model

• Uses a collection of tables to represent both data and the

relationships among those data

• Each column has a unique name, and may correspond to an attribute

• Tables are also called relations

• Most widely used

55

Entity-Relationship Model

• Uses a collection of objects called entities (which are things in the

real world distinguishable from other things) and relationships, which

connect entities

• E-R is widely used in database design

56

Entity-Relationship Model

• Uses a collection of objects called entities (which are things in the

real world distinguishable from other things) and relationships, which

connect entities

• E-R is widely used in database design

56

Object-Based Data Model

• Object oriented programming has become the dominant

software-development methodology

• This has led to the development of an object-oriented data model

that can be seen as extending the E-R model with notions of

encapsulation, functions, and object identity.

57

Object-Based Data Model

• Object oriented programming has become the dominant

software-development methodology

• This has led to the development of an object-oriented data model

that can be seen as extending the E-R model with notions of

encapsulation, functions, and object identity.

57

Semistructured Data Model

• Permits the specification of data where individual items of the same

type may have different sets of attributes

• Extensible Markup Language (XML) is widely used for

semistructured data

58

Semistructured Data Model

• Permits the specification of data where individual items of the same

type may have different sets of attributes

• Extensible Markup Language (XML) is widely used for

semistructured data

58

Database Languages

• A database system provides a data-definition language to specify the

database schema and a data-manipulation language to express

database queries and update the database

• They are distinct, but go together as a way of defining a language

(like SQL).

59

Database Languages

• A database system provides a data-definition language to specify the

database schema and a data-manipulation language to express

database queries and update the database

• They are distinct, but go together as a way of defining a language

(like SQL).

59

DML (Data Manipulation Language)

DML enables users to access or manipulate data as organized by the

appropriate data model

• Retrieval of information stored in the database

• Insertion of new information into the database

• Deletion of information

• Modification of information

60

DML (Data Manipulation Language)

DML enables users to access or manipulate data as organized by the

appropriate data model

• Retrieval of information stored in the database

• Insertion of new information into the database

• Deletion of information

• Modification of information

60

DML (Data Manipulation Language)

DML enables users to access or manipulate data as organized by the

appropriate data model

• Retrieval of information stored in the database

• Insertion of new information into the database

• Deletion of information

• Modification of information

60

DML (Data Manipulation Language)

DML enables users to access or manipulate data as organized by the

appropriate data model

• Retrieval of information stored in the database

• Insertion of new information into the database

• Deletion of information

• Modification of information

60

DML (Data Manipulation Language)

Two different types based on what users need to specify

• Procedural DML: what is needed and how to get it

• Declarative DML: what is needed without specifying how

61

DML (Data Manipulation Language)

Two different types based on what users need to specify

• Procedural DML: what is needed and how to get it

• Declarative DML: what is needed without specifying how

61

DML (Data Manipulation Language)

• A query is a statement requesting the retrieval of information

• We call the part of a DML that that involves information retrieval a

query language

62

DDL (Data Definition Language)

• DDL defines properties of the data and the database schema

• We specify the storage structure and access methods used by the

database system by a set of statements in a special type of DDL

called a data storage and definition language

• These statements define the implementation details of the databse

schemes, which are usually hidden from the users

63

DDL (Data Definition Language)

• DDL defines properties of the data and the database schema

• We specify the storage structure and access methods used by the

database system by a set of statements in a special type of DDL

called a data storage and definition language

• These statements define the implementation details of the databse

schemes, which are usually hidden from the users

63

DDL (Data Definition Language)

• DDL defines properties of the data and the database schema

• We specify the storage structure and access methods used by the

database system by a set of statements in a special type of DDL

called a data storage and definition language

• These statements define the implementation details of the databse

schemes, which are usually hidden from the users

63

DDL (Data Definition Language)

4 big Integrity constraints

• Domain Constraints

• Referential Integrity

• Assertions

• Authorization

64

DDL (Data Definition Language)

4 big Integrity constraints

• Domain Constraints

• Referential Integrity

• Assertions

• Authorization

64

DDL (Data Definition Language)

4 big Integrity constraints

• Domain Constraints

• Referential Integrity

• Assertions

• Authorization

64

DDL (Data Definition Language)

4 big Integrity constraints

• Domain Constraints

• Referential Integrity

• Assertions

• Authorization

64

Domain Constraints

• A domain of possible values must be associated with every attribute

(integer types, date/time types)

• Declaring a domain limits the values that can be taken on

• ‘Cheesecake’ is not a date

• ‘Catfish’ is not an integer

• These are tested easily by the system

65

Domain Constraints

• A domain of possible values must be associated with every attribute

(integer types, date/time types)

• Declaring a domain limits the values that can be taken on

• ‘Cheesecake’ is not a date

• ‘Catfish’ is not an integer

• These are tested easily by the system

65

Domain Constraints

• A domain of possible values must be associated with every attribute

(integer types, date/time types)

• Declaring a domain limits the values that can be taken on

• ‘Cheesecake’ is not a date

• ‘Catfish’ is not an integer

• These are tested easily by the system

65

Domain Constraints

• A domain of possible values must be associated with every attribute

(integer types, date/time types)

• Declaring a domain limits the values that can be taken on

• ‘Cheesecake’ is not a date

• ‘Catfish’ is not an integer

• These are tested easily by the system

65

Domain Constraints

• A domain of possible values must be associated with every attribute

(integer types, date/time types)

• Declaring a domain limits the values that can be taken on

• ‘Cheesecake’ is not a date

• ‘Catfish’ is not an integer

• These are tested easily by the system

65

Referential Integrity

• Ensures a value that appears in one relation for a given set of

attributes also appears in a certain set of attributes in another

relation

• A course relation that includes dept name should only list

dept name values that exist in a department relation

• Actions that violate are rejected

66

Referential Integrity

• Ensures a value that appears in one relation for a given set of

attributes also appears in a certain set of attributes in another

relation

• A course relation that includes dept name should only list

dept name values that exist in a department relation

• Actions that violate are rejected

66

Referential Integrity

• Ensures a value that appears in one relation for a given set of

attributes also appears in a certain set of attributes in another

relation

• A course relation that includes dept name should only list

dept name values that exist in a department relation

• Actions that violate are rejected

66

Assertions

• A condition that the database must always satisfy

• (Domain constraints and referential integrity are assertions)

• “Every department must have at least five courses offered per

semester”

• If an assertion is created, the system tests it for validity, and if it is

valid, any future modification is allowable only if it does not cause

the assertion to be violated

• A new department called “String Theory” with 4 courses would not

be permitted

67

Assertions

• A condition that the database must always satisfy

• (Domain constraints and referential integrity are assertions)

• “Every department must have at least five courses offered per

semester”

• If an assertion is created, the system tests it for validity, and if it is

valid, any future modification is allowable only if it does not cause

the assertion to be violated

• A new department called “String Theory” with 4 courses would not

be permitted

67

Assertions

• A condition that the database must always satisfy

• (Domain constraints and referential integrity are assertions)

• “Every department must have at least five courses offered per

semester”

• If an assertion is created, the system tests it for validity, and if it is

valid, any future modification is allowable only if it does not cause

the assertion to be violated

• A new department called “String Theory” with 4 courses would not

be permitted

67

Assertions

• A condition that the database must always satisfy

• (Domain constraints and referential integrity are assertions)

• “Every department must have at least five courses offered per

semester”

• If an assertion is created, the system tests it for validity, and if it is

valid, any future modification is allowable only if it does not cause

the assertion to be violated

• A new department called “String Theory” with 4 courses would not

be permitted

67

Assertions

• A condition that the database must always satisfy

• (Domain constraints and referential integrity are assertions)

• “Every department must have at least five courses offered per

semester”

• If an assertion is created, the system tests it for validity, and if it is

valid, any future modification is allowable only if it does not cause

the assertion to be violated

• A new department called “String Theory” with 4 courses would not

be permitted

67

Authorization

• Access types permitted to users

• Read authorization

• insert authorization

• update authorization

• delete authorization

68

Authorization

• Access types permitted to users

• Read authorization

• insert authorization

• update authorization

• delete authorization

68

Authorization

• Access types permitted to users

• Read authorization

• insert authorization

• update authorization

• delete authorization

68

Authorization

• Access types permitted to users

• Read authorization

• insert authorization

• update authorization

• delete authorization

68

Authorization

• Access types permitted to users

• Read authorization

• insert authorization

• update authorization

• delete authorization

68

DDL (Data Definition Language)

• Output of DDL is a data dictionary

• Includes metadata

69

DDL (Data Definition Language)

• Output of DDL is a data dictionary

• Includes metadata

69

DDL and DML Example: SQL

DML

• SQL is a nonprocedural language.

• A query takes a table(s) as input(s) and always returns a single table

• Example select instructor.name

from instructor

where instructor.dept name = ’History’

• The query returns one table of containing names of instructors from

the instructor relation who are within the history department.

70

DDL and DML Example: SQL

DML

• SQL is a nonprocedural language.

• A query takes a table(s) as input(s) and always returns a single table

• Example select instructor.name

from instructor

where instructor.dept name = ’History’

• The query returns one table of containing names of instructors from

the instructor relation who are within the history department.

70

DDL and DML Example: SQL

DML

• SQL is a nonprocedural language.

• A query takes a table(s) as input(s) and always returns a single table

• Example select instructor.name

from instructor

where instructor.dept name = ’History’

• The query returns one table of containing names of instructors from

the instructor relation who are within the history department.

70

DDL and DML Example: SQL

DML

• SQL is a nonprocedural language.

• A query takes a table(s) as input(s) and always returns a single table

• Example select instructor.name

from instructor

where instructor.dept name = ’History’

• The query returns one table of containing names of instructors from

the instructor relation who are within the history department.

70

DDL and DML Example: SQL

DDL

• SQL allows for the definition of tables along with integrity

constraints

• Example create table department(

name char(20),

budget numeric(12,2));

• The DDL statement produces a table where names are 20 characters

and budget is a numeric variable that can be 12 digits long (2 to the

right of the decimal)

• This updates the metadata (the schema of the database being an

example)

71

DDL and DML Example: SQL

DDL

• SQL allows for the definition of tables along with integrity

constraints

• Example create table department(

name char(20),

budget numeric(12,2));

• The DDL statement produces a table where names are 20 characters

and budget is a numeric variable that can be 12 digits long (2 to the

right of the decimal)

• This updates the metadata (the schema of the database being an

example)

71

DDL and DML Example: SQL

DDL

• SQL allows for the definition of tables along with integrity

constraints

• Example create table department(

name char(20),

budget numeric(12,2));

• The DDL statement produces a table where names are 20 characters

and budget is a numeric variable that can be 12 digits long (2 to the

right of the decimal)

• This updates the metadata (the schema of the database being an

example)

71

DDL and DML Example: SQL

DDL

• SQL allows for the definition of tables along with integrity

constraints

• Example create table department(

name char(20),

budget numeric(12,2));

• The DDL statement produces a table where names are 20 characters

and budget is a numeric variable that can be 12 digits long (2 to the

right of the decimal)

• This updates the metadata (the schema of the database being an

example)

71

Database Access from Application Programs

• SQL is not as powerful as a universal Turing machine

• Turing completeness requires the computation of any computable

function

• SQL instead is designed to query and work with sets from a

database (no looping constructs)

• SQL cannot communicate over the network

72

Database Access from Application Programs

• SQL is not as powerful as a universal Turing machine

• Turing completeness requires the computation of any computable

function

• SQL instead is designed to query and work with sets from a

database (no looping constructs)

• SQL cannot communicate over the network

72

Database Access from Application Programs

• SQL is not as powerful as a universal Turing machine

• Turing completeness requires the computation of any computable

function

• SQL instead is designed to query and work with sets from a

database (no looping constructs)

• SQL cannot communicate over the network

72

Database Access from Application Programs

• SQL is not as powerful as a universal Turing machine

• Turing completeness requires the computation of any computable

function

• SQL instead is designed to query and work with sets from a

database (no looping constructs)

• SQL cannot communicate over the network

72

Database Access from Application Programs

• Such computations and actions must be written in a host language,

like C, C++, or Java

• SQL queries are embedded to access data in the data base

• Application programs are used to interact with the database like this

73

Database Access from Application Programs

• Such computations and actions must be written in a host language,

like C, C++, or Java

• SQL queries are embedded to access data in the data base

• Application programs are used to interact with the database like this

73

Database Access from Application Programs

• Such computations and actions must be written in a host language,

like C, C++, or Java

• SQL queries are embedded to access data in the data base

• Application programs are used to interact with the database like this

73

Database Access from Application Programs

Two ways to do this

• Providing an application program interface (API) that can be used

to send DML and DDL statements to the database and retrieve the

results

• Open Database Connectivity (ODBC) standard for use with the C

language is a commonly used application program interface

standard. Java Database Connectivity (JDBC) is another for Java

• By extending the host language syntax to embed DML calls within

the host language program. Usually, a special character prefaces

DML calls, and a preprocessor, called the DML precompiler, converts

the DML statements to normal procedure calls in the host language

74

Database Access from Application Programs

Two ways to do this

• Providing an application program interface (API) that can be used

to send DML and DDL statements to the database and retrieve the

results

• Open Database Connectivity (ODBC) standard for use with the C

language is a commonly used application program interface

standard. Java Database Connectivity (JDBC) is another for Java

• By extending the host language syntax to embed DML calls within

the host language program. Usually, a special character prefaces

DML calls, and a preprocessor, called the DML precompiler, converts

the DML statements to normal procedure calls in the host language

74

Database Access from Application Programs

Two ways to do this

• Providing an application program interface (API) that can be used

to send DML and DDL statements to the database and retrieve the

results

• Open Database Connectivity (ODBC) standard for use with the C

language is a commonly used application program interface

standard. Java Database Connectivity (JDBC) is another for Java

• By extending the host language syntax to embed DML calls within

the host language program. Usually, a special character prefaces

DML calls, and a preprocessor, called the DML precompiler, converts

the DML statements to normal procedure calls in the host language

74

Database Design (Brief Overview)

We are using database systems in practice because we have...

• We have a large body of information

• This information doesn’t exist in isolation (it relates)

• The issues at hand are complex

• Database design is how we go about putting together the database

schema

75

Database Design (Brief Overview)

We are using database systems in practice because we have...

• We have a large body of information

• This information doesn’t exist in isolation (it relates)

• The issues at hand are complex

• Database design is how we go about putting together the database

schema

75

Database Design (Brief Overview)

We are using database systems in practice because we have...

• We have a large body of information

• This information doesn’t exist in isolation (it relates)

• The issues at hand are complex

• Database design is how we go about putting together the database

schema

75

Database Design (Brief Overview)

We are using database systems in practice because we have...

• We have a large body of information

• This information doesn’t exist in isolation (it relates)

• The issues at hand are complex

• Database design is how we go about putting together the database

schema

75

Database Design (Brief Overview)

• A high-level data model provides the database designer with a

conceptual framework to specify requirements to the database user

• From there, one moves into a conceptual-design phase (focus is not

on physical storage yet)

• For the relational model - the focus of this course - this involves

what attributes to capture and how to group attributes to form

tables

76

Database Design (Brief Overview)

• A high-level data model provides the database designer with a

conceptual framework to specify requirements to the database user

• From there, one moves into a conceptual-design phase (focus is not

on physical storage yet)

• For the relational model - the focus of this course - this involves

what attributes to capture and how to group attributes to form

tables

76

Database Design (Brief Overview)

• A high-level data model provides the database designer with a

conceptual framework to specify requirements to the database user

• From there, one moves into a conceptual-design phase (focus is not

on physical storage yet)

• For the relational model - the focus of this course - this involves

what attributes to capture and how to group attributes to form

tables

76

Database Design (Brief Overview)

How would the design process work?

• Interface with database users (talk to university administrators)

• Learn data needs (generate transcripts, track who teaches what

student)

• Here is what it may look like for a university, an example we will

return to during the class

77

Database Design (Brief Overview)

How would the design process work?

• Interface with database users (talk to university administrators)

• Learn data needs (generate transcripts, track who teaches what

student)

• Here is what it may look like for a university, an example we will

return to during the class

77

Database Design (Brief Overview)

How would the design process work?

• Interface with database users (talk to university administrators)

• Learn data needs (generate transcripts, track who teaches what

student)

• Here is what it may look like for a university, an example we will

return to during the class

77

Database Design (Brief Overview)

• The University is organized into departments. Each department is

identified by a unique name, is located in a building, and has a

budget

• Each department has a list of course offers. Each course has credits,

and may or may not have prerequisites

• Instructors teach courses, are affiliated with a department, and have

a salary

• Students take courses, and have accumulated credit hours

78

Database Design (Brief Overview)

• The University is organized into departments. Each department is

identified by a unique name, is located in a building, and has a

budget

• Each department has a list of course offers. Each course has credits,

and may or may not have prerequisites

• Instructors teach courses, are affiliated with a department, and have

a salary

• Students take courses, and have accumulated credit hours

78

Database Design (Brief Overview)

• The University is organized into departments. Each department is

identified by a unique name, is located in a building, and has a

budget

• Each department has a list of course offers. Each course has credits,

and may or may not have prerequisites

• Instructors teach courses, are affiliated with a department, and have

a salary

• Students take courses, and have accumulated credit hours

78

Database Design (Brief Overview)

• The University is organized into departments. Each department is

identified by a unique name, is located in a building, and has a

budget

• Each department has a list of course offers. Each course has credits,

and may or may not have prerequisites

• Instructors teach courses, are affiliated with a department, and have

a salary

• Students take courses, and have accumulated credit hours

78

Database Design (Brief Overview)

How would we do this?

• The Entity-Relationship Model

• Normalization

• A lot more in Lecture 3!

79

Database Design (Brief Overview)

How would we do this?

• The Entity-Relationship Model

• Normalization

• A lot more in Lecture 3!

79

Database Design (Brief Overview)

How would we do this?

• The Entity-Relationship Model

• Normalization

• A lot more in Lecture 3!

79

Discussion

• What are two disadvantages of database systems?

• Suppose you want to build a video site similar to YouTube. Consider

disadvantages of keeping data in a file-processing system. Discuss

the relevance of each of these points to the storage of actual video

data, and to metadata about the video, such as title, the user who

uploaded it, tags, and which users viewed it.

• Describe at least 3 tables that might be used to store information in

a social-networking system such as Facebook

80

Discussion

• What are two disadvantages of database systems?

• Suppose you want to build a video site similar to YouTube. Consider

disadvantages of keeping data in a file-processing system. Discuss

the relevance of each of these points to the storage of actual video

data, and to metadata about the video, such as title, the user who

uploaded it, tags, and which users viewed it.

• Describe at least 3 tables that might be used to store information in

a social-networking system such as Facebook

80

Discussion

• What are two disadvantages of database systems?

• Suppose you want to build a video site similar to YouTube. Consider

disadvantages of keeping data in a file-processing system. Discuss

the relevance of each of these points to the storage of actual video

data, and to metadata about the video, such as title, the user who

uploaded it, tags, and which users viewed it.

• Describe at least 3 tables that might be used to store information in

a social-networking system such as Facebook

80

Introduction to the Relational Model

81

Structure of Relational Databases

• Relational database is a collection of tables, each of which is

assigned a unique name

• A row in a table represents a relationship among a set of values

• In mathematics, a tuple is a sequence (or list) of values

• A relationship between n values is a n-tuple

82

Structure of Relational Databases

• Relational database is a collection of tables, each of which is

assigned a unique name

• A row in a table represents a relationship among a set of values

• In mathematics, a tuple is a sequence (or list) of values

• A relationship between n values is a n-tuple

82

Structure of Relational Databases

• Relational database is a collection of tables, each of which is

assigned a unique name

• A row in a table represents a relationship among a set of values

• In mathematics, a tuple is a sequence (or list) of values

• A relationship between n values is a n-tuple

82

Structure of Relational Databases

• Relational database is a collection of tables, each of which is

assigned a unique name

• A row in a table represents a relationship among a set of values

• In mathematics, a tuple is a sequence (or list) of values

• A relationship between n values is a n-tuple

82

Structure of Relational Databases

• We call a table a relation

• We call a row a tuple

• We call columns attributes

83

Structure of Relational Databases

• We call a table a relation

• We call a row a tuple

• We call columns attributes

83

Structure of Relational Databases

• We call a table a relation

• We call a row a tuple

• We call columns attributes

83

Structure of Relational Databases

• Each attribute in a relation has a domain

• The domain is the set of permitted values

84

Structure of Relational Databases

• Each attribute in a relation has a domain

• The domain is the set of permitted values

84

Structure of Relational Databases

• For all relations, the domains of attributes should be atomic

• Atomic means the elements of the domain are considered to be

indivisible units

• Say we have an attribute in an Employee relation that contains

phone numbers

• Assume further someone can have more than one phone number

85

Structure of Relational Databases

• For all relations, the domains of attributes should be atomic

• Atomic means the elements of the domain are considered to be

indivisible units

• Say we have an attribute in an Employee relation that contains

phone numbers

• Assume further someone can have more than one phone number

85

Structure of Relational Databases

• For all relations, the domains of attributes should be atomic

• Atomic means the elements of the domain are considered to be

indivisible units

• Say we have an attribute in an Employee relation that contains

phone numbers

• Assume further someone can have more than one phone number

85

Structure of Relational Databases

• For all relations, the domains of attributes should be atomic

• Atomic means the elements of the domain are considered to be

indivisible units

• Say we have an attribute in an Employee relation that contains

phone numbers

• Assume further someone can have more than one phone number

85

Structure of Relational Databases

• For example, the data may look like this

•
Name Phone Number(s)

John Doe (123) 456-7890, (987) 654-3210

Jane Smith (555) 123-4567, (333) 888-9999

Table 1: Employee Information

• The elements of the domain phone number have supbarts (number 1

and number 2). Not atomic

86

Structure of Relational Databases

• For example, the data may look like this

•
Name Phone Number(s)

John Doe (123) 456-7890, (987) 654-3210

Jane Smith (555) 123-4567, (333) 888-9999

Table 1: Employee Information

• The elements of the domain phone number have supbarts (number 1

and number 2). Not atomic

86

Structure of Relational Databases

• For example, the data may look like this

•
Name Phone Number(s)

John Doe (123) 456-7890, (987) 654-3210

Jane Smith (555) 123-4567, (333) 888-9999

Table 1: Employee Information

• The elements of the domain phone number have supbarts (number 1

and number 2). Not atomic

86

Structure of Relational Databases

• Even with one number, we can fail atomicity

•
Name Phone Number(s)

John Doe c(123,456,7890)

Jane Smith c(555,123,4567)

Table 2: Employee Information

• Atomicity matters because it simplifies data manipulation

87

Structure of Relational Databases

• Even with one number, we can fail atomicity

•
Name Phone Number(s)

John Doe c(123,456,7890)

Jane Smith c(555,123,4567)

Table 2: Employee Information

• Atomicity matters because it simplifies data manipulation

87

Structure of Relational Databases

• Even with one number, we can fail atomicity

•
Name Phone Number(s)

John Doe c(123,456,7890)

Jane Smith c(555,123,4567)

Table 2: Employee Information

• Atomicity matters because it simplifies data manipulation

87

Structure of Relational Databases

•

88

Structure of Relational Databases

• For some attributes we will have null values

• Null values do not exist (NA), and can cause complications

• We will address these head on in lecture 4

89

Structure of Relational Databases

• For some attributes we will have null values

• Null values do not exist (NA), and can cause complications

• We will address these head on in lecture 4

89

Structure of Relational Databases

• For some attributes we will have null values

• Null values do not exist (NA), and can cause complications

• We will address these head on in lecture 4

89

Structure of Relational Databases

• We must have a way to specify how tuples within a given relation

are distinguished

• No two tuples are allowed to have the exactly all the same values for

all of the attributes

• A superkey is a set of one or more attributes that allows us to

identify a tuple in the relation uniquely

• Otherwise, we have meaningless rows, which is redundancy

90

Structure of Relational Databases

• We must have a way to specify how tuples within a given relation

are distinguished

• No two tuples are allowed to have the exactly all the same values for

all of the attributes

• A superkey is a set of one or more attributes that allows us to

identify a tuple in the relation uniquely

• Otherwise, we have meaningless rows, which is redundancy

90

Structure of Relational Databases

• We must have a way to specify how tuples within a given relation

are distinguished

• No two tuples are allowed to have the exactly all the same values for

all of the attributes

• A superkey is a set of one or more attributes that allows us to

identify a tuple in the relation uniquely

• Otherwise, we have meaningless rows, which is redundancy

90

Structure of Relational Databases

• We must have a way to specify how tuples within a given relation

are distinguished

• No two tuples are allowed to have the exactly all the same values for

all of the attributes

• A superkey is a set of one or more attributes that allows us to

identify a tuple in the relation uniquely

• Otherwise, we have meaningless rows, which is redundancy

90

Structure of Relational Databases

• Formally, let R denote the set of attributes in the schema of a

relation r.

• If we say that a subset K of R is a superkey for r, we are restricting

consideration to instances of relations r in which no two distinct

tuples have the same values on all attributes K.

• If t1 ̸= t2 and both are in some relation r , then t1K ̸= t2K

91

Structure of Relational Databases

• Superkeys may contain extraneous attributes

• If K is a superkey, so is K plus something else

• What we really want is a superkey where no subset of that superkey

is also a superkey

• We call that a candidate key

• We use the term primary key to denote a candidate key that is

chosen by the database designer as the means of identifying tuples

within the relation

92

Structure of Relational Databases

• Primary keys should be unique

• The value should rarely - if ever change

• One relation, r1 may have an attribute which is a primary key in r2 -

this is a foreign key from r1 to r2

• r1 is the referencing relation, and r2 is the referenced relation

93

Structure of Relational Databases

• Primary keys should be unique

• The value should rarely - if ever change

• One relation, r1 may have an attribute which is a primary key in r2 -

this is a foreign key from r1 to r2

• r1 is the referencing relation, and r2 is the referenced relation

93

Structure of Relational Databases

• Primary keys should be unique

• The value should rarely - if ever change

• One relation, r1 may have an attribute which is a primary key in r2 -

this is a foreign key from r1 to r2

• r1 is the referencing relation, and r2 is the referenced relation

93

Structure of Relational Databases

• Primary keys should be unique

• The value should rarely - if ever change

• One relation, r1 may have an attribute which is a primary key in r2 -

this is a foreign key from r1 to r2

• r1 is the referencing relation, and r2 is the referenced relation

93

Structure of Relational Databases

It is common to format schemas as follows

Instructor(InstructorID, InstructorName, Department Name, Salary)

Course(CourseID, CourseName, Department Name, Credits)

94

Structure of Relational Databases

Let’s look at some examples

95

Structure of Relational Databases

Table 3: Employee Information

ID Name DepartmentName Salary

1 John Smith Sales $60,000
2 Jane Doe Marketing $55,000
3 Bob Johnson HR $50,000
4 Alice Brown Engineering $70,000
5 Chris Lee Accounting $65,000
7 John Lee Accounting $33,000

96

Bad Keys

97

Example 1: Salary

Table 4: Employee Information

ID Name DepartmentName Salary

1 John Smith Sales $60,000
2 Jane Doe Marketing $55,000

• Lets say Jane gets a 15,000 raise

• Now she would have the same ID as John

• It’d no longer be unique!

• And what if we wanted to look at older data on Jane!

98

Example 1: Salary

Table 4: Employee Information

ID Name DepartmentName Salary

1 John Smith Sales $60,000
2 Jane Doe Marketing $55,000

• Lets say Jane gets a 15,000 raise

• Now she would have the same ID as John

• It’d no longer be unique!

• And what if we wanted to look at older data on Jane!

98

Example 1: Salary

Table 4: Employee Information

ID Name DepartmentName Salary

1 John Smith Sales $60,000
2 Jane Doe Marketing $55,000

• Lets say Jane gets a 15,000 raise

• Now she would have the same ID as John

• It’d no longer be unique!

• And what if we wanted to look at older data on Jane!

98

Example 1: Salary

Table 4: Employee Information

ID Name DepartmentName Salary

1 John Smith Sales $60,000
2 Jane Doe Marketing $55,000

• Lets say Jane gets a 15,000 raise

• Now she would have the same ID as John

• It’d no longer be unique!

• And what if we wanted to look at older data on Jane!

98

Example 2: DepartmentName

Table 5: Employee Information

ID Name DepartmentName Salary

5 Chris Lee Accounting $65,000
7 John Lee Accounting $33,000

• Multiple people are in the same department, so it won’t be unique

• Also...department assignments can change (what if John transfers?)

99

Example 2: DepartmentName

Table 5: Employee Information

ID Name DepartmentName Salary

5 Chris Lee Accounting $65,000
7 John Lee Accounting $33,000

• Multiple people are in the same department, so it won’t be unique

• Also...department assignments can change (what if John transfers?)

99

Example 3: Good Example - ID

Table 6: Employee Information

ID Name DepartmentName Salary

1 John Smith Sales $60,000
2 Jane Doe Marketing $55,000
3 Bob Johnson HR $50,000
4 Alice Brown Engineering $70,000
5 Chris Lee Accounting $65,000
7 John Lee Accounting $33,000

• Its an artificial number assigned to employees so its fixed and unique

100

Example 4: Not Great - Concatenated Key with ID

Table 7: Employee Information

ID Name DepartmentName Salary ID2

1 John Smith Sales $60,000 John 1

2 Jane Doe Marketing $55,000 Jane 2

• ID2 contains ID so it will be unique

• But just using ID will also uniquely identify each tuple

• So ID2 is just adding data to our table which we don’t really need

101

Example 4: Not Great - Concatenated Key with ID

Table 7: Employee Information

ID Name DepartmentName Salary ID2

1 John Smith Sales $60,000 John 1

2 Jane Doe Marketing $55,000 Jane 2

• ID2 contains ID so it will be unique

• But just using ID will also uniquely identify each tuple

• So ID2 is just adding data to our table which we don’t really need

101

Example 4: Not Great - Concatenated Key with ID

Table 7: Employee Information

ID Name DepartmentName Salary ID2

1 John Smith Sales $60,000 John 1

2 Jane Doe Marketing $55,000 Jane 2

• ID2 contains ID so it will be unique

• But just using ID will also uniquely identify each tuple

• So ID2 is just adding data to our table which we don’t really need

101

Example: Tuples

In our example, a tuple may be (1, John Smith, Sales, 60,000)

102

Order Doesn’t Matter

This is the same relation, tuples are preserved

Table 8: Employee Information

ID Name DepartmentName Salary

4 Alice Brown Engineering $70,000
2 Jane Doe Marketing $55,000
3 Bob Johnson HR $50,000
1 John Smith Sales $60,000
7 John Lee Accounting $33,000
5 Chris Lee Accounting $65,000

103

Practice Exercises

Consider the following relational database

employee(person name, street, city)

works(company name,, person name, salary)

company(company name, city)

What are appropriate primary keys?

104

Practice Exercises

Consider the following relational database

employee(person name, street, city)

works(company name, person name, salary)

company(company name, city)

What are appropriate primary keys?

105

Practice Exercises

A peer argues that name is an appropriate primary key for this relation

since no two people have the same first and last name. Another says it is

a super key not a primary key. What is your position?

Table 9: Employee Information

ID Name DepartmentName Salary

4 Alice Brown Engineering $70,000
2 Jane Doe Marketing $55,000
3 Bob Johnson HR $50,000
1 John Smith Sales $60,000
7 John Lee Accounting $33,000
5 Chris Lee Accounting $65,000

106

Practice Exercises

Neither. It is not a superkey or a primary key because someone with the

same name may be hired in the future, even if no one has the same exact

name right now.

107

Practice Exercises

Consider the following two relations:

CID Name Email

1 John Smith john@example.com

2 Jane Doe jane@example.com

3 Bob Johnson bob@example.com

ProductID Name Price CID

101 Product A $20 2

102 Product F $20 2

103 Product C $25 1

104 Product E $40 3

What is an insertion of a tuple that would violate the foreign key

constraint.

108

Practice Exercises

Adding (10106, Product E, 40, 11) - because there is no customer 11

109

