
ER Examples

• Barber business

• Musical artists
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The Relational Algebra

• The relational algebra is a procedural query language

• This means it says what data it wants and how to get it

• It consists of a set of operations that take one or two relations as

input and produces a new relation as a result

• The fundamental operations in the relational algebra are select,

project, union, set difference, Cartesian product, and rename.

• Others include set intersection, natural join, and assignment.
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The Relational Algebra

• Select, project, and rename are called unary operations because they

operate on one relations

• Union, intersection, set difference, Cartesian product, and natural

join operate on pairs of relations and are therefore called binary

operations.
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The Select Operation

• The select operation selects tuples that satisfy a given predicate

• σ

• The predicate appears as a subscript to σ

• The argument relation is in parentheses after σ
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Say we want the tuples of the following relation where the

instructor is in the physics department.

Table 1: Instructor Relation

ID NAME DEPT SALARY

10101 Srinivasan CS 98822.97

12121 Wu Finance 92298.75

15151 Mozart Music 99473.86

22222 Einstein Physics 98718.90

32343 El Said History 95757.29

33456 Gold Phyics 97907.41

45565 Katz CS 96998.25

58583 Califieri History 90743.02

76543 Singh Finance 95514.52

76766 Crick CS 97777.23

83821 Brandt BIO 96493.92

98345 Kim Enig 91779.37
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The Select Operation

• We write:

• σDEPT=Physics (Instructor)
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The Select Operation

Our result is:

Table 2: σDEPT=Physics (Instructor)

ID NAME DEPT SALARY

22222 Einstein Physics 98718.90

33456 Gold Physics 97907.41
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The Project Operator

• The project operator takes all rows i from column j

• Π

• Again, the predicate appears as a subscript and the argument

relation in ()
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The Project Operator

• Recall our Instructor relation

• Consider ΠID(Instructor)

• What is the result?
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ΠID(Instructor)

Table 3: ΠID(Instructor)

ID

10101

12121

15151

22222

32343

33456

45565

58583

76543

76766

83821

98345
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Composition of Relational Operations

• What about a more complicated question?

• “Find the name of all instructors in the Physics department”

• We can compose relational operations together

• Write Πname (σdept name=Physics (instructor))
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Composition of Relational Operations

• What did we do here

• Πname (σdept name=Physics (instructor))

• Instead of giving a name of a relation, we used an expression that

will create a relation
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Composition of Relational Operations

• Since the results of a relational-algebra operation is of the same type

(relation) as its inputs, relational algebra operations can be

composed into relational-algebra expressions!

• Just like composing arithmetic operations (+, -, *, ect).
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The Union Operation

• he Union ∪ operator takes the union of two tables produced by a

query
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The Union Operation

petID petType owner dwelling

1 Dog John Rent

2 Cat John Rent

3 Cat Sarah Own

4 Parrot Michael Rent

5 Fish Michael Rent

6 Fish Emily Own
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The Union Operation

• Say we want to know all of the cat and fish owners who rent their

dwellings

• What would we write to get the names of cat owners who rent?

• Πowner (σpetType=Cat∧dwelling=Rent(Pets))

• What would we write to get the fish owners who rent?

• Πowner (σpetType=Fish∧dwelling=Rent(Pets))

• The Union operator gives us both sets combined
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The Union Operation

• Πowner (σpetType=Cat∧dwelling=Rent(Pets)) ∪
Πowner (σpetType=Fish∧dwelling=Rent(Pets))
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The Union Operation

• Important!

• Notice we took the union of two sets that had a petID value

• We can only take unions between compatible relations

• We need two conditions for the union operation to hold
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The Union Operation

• The relations r and s must be of the same arity (same number of

attributes)

• domains of the ith attribute of r and ith attribute of s must be the

same, for all i

• This is more restrictive than set theory
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The Set Difference Operation

• − or / like before

• The set difference between A and B (A-B) will give tuples that

appear in A and not in B
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The Set Difference Operation

Lets look at our pets table again

petID petType owner dwelling

1 Dog John Rent

2 Cat John Rent

3 Cat Sarah Own

4 Parrot Michael Rent

5 Fish Michael Rent

6 Fish Emily Own

How would we write and find owners who have fish but not parrots?
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The Set Difference Operation

• Πowner (σpetType=fish(Pets))− Πowner (σpetType=parrots(Pets))

• Emily

• IMPORTANT: the same compatibility conditions from union apply
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The Cartesian-Product Operation

• ×
• Say we have two relations, A and B

• C = A× B

• What tuples appear in C

• Each possible pair of tuples (one from A, and one from B).
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The Cartesian-Product Operation

• Say A has n1 tuples and B n2 tuples

• C will have n1 ∗ n2 tuples

• Note it may be the case t[IDA] ̸= t[IDb]

• What tuples appear in C

• Still each possible pair of tuples (one from A, and one from B).
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The Cartesian-Product Operation

Imagine we had another table on top of our pet table that represented

how different pettypes needed to be kept (called PetTraits)

petType liveType

Dog Land

Cat Land

Fish Water
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The Cartesian-Product Operation

The Cartesian product of Pets and PetTraits is

petID petType owner dwelling petType liveType

1 Dog John Rent Dog Land

1 Dog John Rent Cat Land

1 Dog John Rent Fish Water

2 Cat John Rent Dog Land

2 Cat John Rent Cat Land

2 Cat John Rent Fish Water

3 Fish Sarah Own Dog Land

3 Fish Sarah Own Cat Land

3 Fish Sarah Own Fish Water

4 Dog Michael Rent Dog Land

4 Dog Michael Rent Cat Land

4 Dog Michael Rent Fish Water

5 Cat Michael Rent Dog Land

5 Cat Michael Rent Cat Land

5 Cat Michael Rent Fish Water

6 Fish Emily Own Dog Land

6 Fish Emily Own Cat Land

6 Fish Emily Own Fish Water
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The Cartesian-Product Operation

• Notice anything off about this table?

• It contains tuples that don’t exist in reality

• How do we deal with this?
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The Cartesian-Product Operation

• Naming schema:

• If an attribute name in r and s match, attach the name of the

relation to the attribute(s) with duplicates

• petID, petType, owner, dwelling, petType, liveType

• Changes to: petID, Pets.petType, owner, dwelling,

PetTraits.petType liveType
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The Cartesian-Product Operation

• We have tuples for which t[Pets.petType] ̸= t[PetTraits.petType]

• At the same time, there are tuples that match!

• Lets look closer
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The Cartesian-Product Operation

petID Pets.petType owner dwelling PetTraits.petType liveType

1 Dog John Rent Dog Land

1 Dog John Rent Cat Land

1 Dog John Rent Fish Water

2 Cat John Rent Dog Land

2 Cat John Rent Cat Land

2 Cat John Rent Fish Water

3 Fish Sarah Own Dog Land

3 Fish Sarah Own Cat Land

3 Fish Sarah Own Fish Water

4 Dog Michael Rent Dog Land

4 Dog Michael Rent Cat Land

4 Dog Michael Rent Fish Water

5 Cat Michael Rent Dog Land

5 Cat Michael Rent Cat Land

5 Cat Michael Rent Fish Water

6 Fish Emily Own Dog Land

6 Fish Emily Own Cat Land

6 Fish Emily Own Fish Water
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The Cartesian Product Operator

• We have instances where Pets.petType matches PetTraits.petType

• We can use the select operator to refine our table to get rid of the

pesky errors

• σPets.petType=PetTraits.petType(Pets × PetTraits)
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The Cartesian Product Operator

petID petType owner dwelling petType liveType

1 Dog John Rent Dog Land

2 Cat John Rent Cat Land

3 Fish Sarah Own Fish Water

4 Dog Michael Rent Dog Land

5 Cat Michael Rent Cat Land

6 Fish Emily Own Fish Water
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The Rename Operator

• We may, at times, want to rename attributes in a table

• For example, upon combining tables, we may worry that we will

produce duplicate attribute names

• This could create ambiguity

• Forbidden
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The Rename Operator

• For a relational-algebra expression E, we may use ρ for renaming

• ρx(E )

• returns the results of E under the name x
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The Rename Operator: Example 1

• Assume E has arity n.

• Perform ρx(A1,A2,...An)(E )

• Attributes in E are now A1,A2, ...An
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The Rename Operator: Example 2

• Consider the following query

• “What is the highest salary in the University”
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The Rename Operator: Example 2

Table 4: Instructor Relation

ID NAME DEPT SALARY

10101 Srinivasan CS 98822.97

12121 Wu Finance 92298.75

15151 Mozart Music 99473.86

22222 Einstein Physics 98718.90

32343 El Said History 95757.29

33456 Gold Phyics 97907.41

45565 Katz CS 96998.25

58583 Califieri History 90743.02

76543 Singh Finance 95514.52

76766 Crick CS 97777.23

83821 Brandt BIO 96493.92

98345 Kim Enig 91779.37
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The Rename Operator: Example 2

• One strategy here is as follows:

• Combine the instructor table with itself via a Cartesian product

• This will produce a table with 144 tuples and 8 attributes

(duplicates)

• We can then compare the two salaries in any tuple, but can only do

so of the columns are unambiguous.
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The Rename Operator: Example 2

• We use the rename operator to remove ambiguity

•
Πsalary (σsalary<b.salary(instructor × ρb(instructor)))

• This query will select all tuples for which salary is less than the

highest salary
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The Rename Operator: Example 2

• Of course, this will give us the 11 instructors who earn LESS than

the highest

• What can we do?

• Set subtraction!

•

Πsalary (instructor)−Πsalary (σsalary<b.salary(instructor × ρb(instructor)))

• The result is the set of all instructors minus the set of instructors

earning less than the highest, which will give us the highest salary.
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The Set Intersection Operation

• Consider two entities A and B

• Set intersection is A ∩ B

• Same restrictions on unions apply!
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The Set Intersection Operation

• A useful equivalence result for set intersection comes from set

difference

• A ∩ B = A− (A− B)

• Set intersection is most often used as a shortcut for the above

calculation
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The Natural Join Operation

• We were able to combine two relations with a Cartesian product

before

• But...when we did it...it was kind of taxing!

• This is common operation, calls for a short cut
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The Natural Join Operation

• ▷◁

• Natural join forms of a Cartesian product, performs a selection

forcing equality on those attributes that appear in both relation

schemas, and removes duplicate attributes
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The Natural Join Operation

• Consider two relations r(R) and s(S). The natural join of r and s,

denoted by r ▷◁ s is a schema on R ∪ S defined as

• r ▷◁ s = ΠR∪S(σr .A1=s.A1∧r .A2=s.A2∧...r .An=s.An(r × s) where

R ∩ S = {A1,A2, ...An}
• Further note that if R ∩ S = ∅ then r ▷◁ s = r × s
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The Natural Join Operation

Consider three different relations

• Course(course id, students)

• Instructor (ID, name, dept name, salary)

• Teaches (ID, course id, sec id, semester, year)

• (instructor ▷◁ teaches) ▷◁ course = instructor ▷◁ (teaches ▷◁ course)

• The Natural join is associative
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The θ Join

• The θ join is a variant of the natural join that allows us to combine

a selection and a Cartesian product into a single operation

• Consider relations r(R) and s(S), and let θ be a predicate on the

attributes in the schema R ∪ S .

• The θ join operation r ▷◁θ s = σθ(r × s)
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Example of Theta Join

Let’s consider two tables:

Students

StudentID Name Age

1 Alice 20

2 Bob 22

3 Carol 21

Courses

CourseID CourseName Instructor

101 Math 101 John Doe

102 English 101 Jane Smith

103 History 101 John Doe
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Example of Theta Join (Contd.)

We want to find students who are enrolled in courses taught by the

instructor with the name ’John Doe.’

Result = Students ▷◁Instructor=’John Doe’ Courses

The result would include students enrolled in courses taught by ’John

Doe.’

Result

StudentID Name Age CourseID CourseName

1 Alice 20 101 Math 101

3 Carol 21 103 History 101
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Handling Null Values

• There are situations where some information doesn’t exist or may

not exist yet

• NULL value: an as yet unknown data value within a table column
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Handling Null Values

• NULL values also create a new information content of

1(NULL = TRUE )

• We therefore have to leave behind binary logic in which any

statement is either true or false
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Handling Null values

• Lets look at an example: we want to know the set of employees that

live in Kentucky or who do not live in Kentucky

E# Name Street City

1 John Doe 123 Main St New York

2 Jane Smith 456 Elm St NULL

3 Bob Johnson 789 Oak St Los Angeles

4 Alice Brown 101 Pine St NULL
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Handling Null values

ΠName (σCity=Lexington) ∪ ΠName (σCity ̸=Lexington)

E# Name Street City

1 John Doe 123 Main St New York

3 Bob Johnson 789 Oak St Los Angeles
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Handling Null values

• This defies the conventional logic that the union of employees who

live in Lexington with its complement (the employs who do not live

in Lexington) should be the complete set of employees

• Sentential logic with the values of TRUE, FALSE, and UKNOWN is

commonly called three valued logic

• Since this practically makes interpretation of results difficult, we

avoid these values when we can
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Handling Null values

• Sometimes a default is used

• In SQL, we would use the function COALESE(X,Y), which will

replace unknown X with Y
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Extended Relational-Algebra Operations
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Outer Join Operations

• The outer-join operation is an extension of the join operation to deal

with missing information

• Consider the following relational schema

• Instructor(ID, Name, dept name)

• Teaches(ID, course id, sec id, semester, year)

• Lets say not every teacher has a course
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Gold On Sabbatical

ID CourseID Semester year

10101 CS101 fall 2010

10101 CS315 fall 2010

10101 CS347 spring 2009

12121 Fin201 spring 2009

ID NAME DEPT SALARY

10101 Srinivasan CS 90542.86

12121 Wu Finance 95024.65

15151 Gold Music 97595.49
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Outer Join Operations

• We will lose information if we attempt to join, because Gold isn’t

teaching these courses

• Outer joins will allow us to preserve tuples that would be lost in a

join by creating tuples in the result with null values

• Similar to a natural join
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Left/Right Join Operations

• Left outer join ( ▷◁)

• Right outer join (▷◁ )

• Right is symmetric to left
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Left/Right Join Operations

• R ▷◁ S

• Take all tuples in the left relation (R) that do not match with any

tuple in the right relation (S), and pad them null values

• Should there be any tuples from S that do not match with R, pad

with null values
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Left/Right Join Operations
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• Should there be any tuples from S that do not match with R, pad

with null values
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Left/Right Join Operations

Instructor ▷◁ Teaches

ID NAME DEPT SALARY CourseID Semester year

10101 Srinivasan CS 90542.86 CS101 fall 2010

10101 Srinivasan CS 90542.86 CS315 fall 2010

10101 Srinivasan CS 90542.86 CS347 spring 2009

12121 Wu Finance 95024.65 Fin201 spring 2009

15151 Gold Music 97595.49
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Full Outer Join Operations

• Full outer join ( ▷◁ ) does both a right and left outer join, padding

tuples from both ends
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Full Outer Join Operations

• It is interesting to note that outerjoin operations can be expressed as

basic relational algebra operations

•
(r ▷◁ s) ∪ (r − ΠR(r ▷◁ s))× {(null , ...null)}
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Full Outer Join Operations

• It is interesting to note that outerjoin operations can be expressed as
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Generalized Projection ΠF1,F2,...,Fn(E )

• We may generalize the projection operator by allowing for operations

such as arithmetic and string functions to be applied

• ΠF1,F2,...,Fn(E ) (where Fi are functions)

• Πsalary∗ 1
12
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Aggregation G

• Aggregation functions (G) take a collection of values and return a

single value as a result

• count, max, sum, average, min

• Gsum(salary)(instructor)
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Aggregation G

• Sometimes we may wish to only factor in distinct observations

• count-distinctID

• Other times we may wish to apply aggregation to a group of sets of

tuples

• dept name Gaverage(salary)(instructor)
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Aggregation G

• A more general expression is

•

G1,G2,...GnGF1(A1),F2(A2),...Fm(Am)(E )

• The collection {G1,G2, ...Gn} ∈ G is a list of grouping attributes

(department name)

• Each Fi is an aggregation function

• Each Ai is an attribute name
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The Assignment Operator

• Step1 ← R × S

• Step2 ← σr .A1=s.A1∧r .A2=s.A2∧...r .An=s.An(Step1)

• result ← ΠR∪S(Step2)

• We rewrote the definition of ▷◁ in steps using the assignment

operator
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How Do We Approach Writing Good Queries?

• Break it into smaller questions

• Think about the sequence of how things must happen

• The very first steps are the ones that are going to be buried the

deepest in parentheses
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Relational Algebra: Recipes with Meat Products

• Given:

• FoodItems(item, type, calories)

• Ingredients(fooditem, recipe, ounces)

• stock(item, stock)

• Task: Find names of all recipes that contain meat products (food

items of type ”Meat”).

• Πrecipe(σtype=’Meat’(FoodItems) ▷◁fooditem=item Ingredients)
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