- Barber business
- Musical artists

- The relational algebra is a procedural query language
- This means it says what data it wants and how to get it
- It consists of a set of operations that take one or two relations as input and produces a new relation as a result
- The fundamental operations in the relational algebra are *select*, *project*, *union*, *set difference*, *Cartesian product*, and *rename*.
- Others include set intersection, natural join, and assignment.

- Select, project, and rename are called *unary* operations because they operate on one relations
- Union, intersection, set difference, Cartesian product, and natural join operate on pairs of relations and are therefore called *binary* operations.

- The select operation selects tuples that satisfy a given predicate
- σ
- $\bullet\,$ The predicate appears as a subscript to $\sigma\,$
- The argument relation is in parentheses after σ

Say we want the tuples of the following relation where the instructor is in the physics department.

Table 1: Inst	ructor R	elation
---------------	----------	---------

ID	NAME	DEPT	SALARY
10101	Srinivasan	CS	98822.97
12121	Wu	Finance	92298.75
15151	Mozart	Music	99473.86
22222	Einstein	Physics	98718.90
32343	El Said	History	95757.29
33456	Gold	Phyics	97907.41
45565	Katz	CS	96998.25
58583	Califieri	History	90743.02
76543	Singh	Finance	95514.52
76766	Crick	CS	97777.23
83821	Brandt	BIO	96493.92
98345	Kim	Enig	91779.37

- We write:
- $\sigma_{DEPT=Physics}$ (Instructor)

Our result is:

Table 2: $\sigma_{DEPT=Physics}$ (Instructor)

ID	NAME	DEPT	SALARY
22222	Einstein	Physics	98718.90
33456	Gold	Physics	97907.41

- The project operator takes all rows i from column j
- П
- Again, the predicate appears as a subscript and the argument relation in ()

- Recall our Instructor relation
- Consider $\Pi_{ID}(Instructor)$
- What is the result?

Table 3: $\Pi_{ID}(Instructor)$

ID
10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

- What about a more complicated question?
- "Find the name of all instructors in the Physics department"
- We can compose relational operations together
- Write $\Pi_{name} \left(\sigma_{dept_name=Physics} \left(instructor \right) \right)$

- What did we do here
- $\Pi_{name} \left(\sigma_{dept_name=Physics} \left(instructor \right) \right)$
- Instead of giving a name of a relation, we used an expression that will create a relation

- Since the results of a relational-algebra operation is of the same type (relation) as its inputs, relational algebra operations can be composed into relational-algebra expressions!
- Just like composing arithmetic operations (+, -, *, ect).

- he Union \cup operator takes the union of two tables produced by a query

petID	petType	owner	dwelling
1	Dog	John	Rent
2	Cat	John	Rent
3	Cat	Sarah	Own
4	Parrot	Michael	Rent
5	Fish	Michael	Rent
6	Fish	Emily	Own

- Say we want to know all of the cat and fish owners who rent their dwellings
- What would we write to get the names of cat owners who rent?
- $\Pi_{owner}(\sigma_{petType=Cat \land dwelling=Rent}(Pets))$
- What would we write to get the fish owners who rent?
- $\Pi_{owner}(\sigma_{petType=Fish \land dwelling=Rent}(Pets))$
- The Union operator gives us both sets combined

• $\Pi_{owner}(\sigma_{petType=Cat \land dwelling=Rent}(Pets)) \cup \Pi_{owner}(\sigma_{petType=Fish \land dwelling=Rent}(Pets))$

• Important!

- Notice we took the union of two sets that had a petID value
- We can only take unions between compatible relations
- We need two conditions for the union operation to hold

- The relations *r* and *s* must be of the same arity (same number of attributes)
- domains of the *i*th attribute of *r* and *i*th attribute of *s* must be the same, for all *i*
- This is more restrictive than set theory

- $\bullet~-$ or / like before
- The set difference between A and B (A-B) will give tuples that appear in A and not in B

Lets look at our pets table again

petID	petType	petType owner dw	
1	Dog	John	Rent
2	Cat	John	Rent
3	Cat	Sarah	Own
4	Parrot	Michael	Rent
5	Fish	Michael	Rent
6	Fish	Emily	Own

How would we write and find owners who have fish but not parrots?

- $\Pi_{owner}(\sigma_{petType=fish}(Pets)) \Pi_{owner}(\sigma_{petType=parrots}(Pets))$
- Emily
- IMPORTANT: the same compatibility conditions from union apply

- ×
- Say we have two relations, A and B
- $C = A \times B$
- What tuples appear in C
- Each possible pair of tuples (one from A, and one from B).

- Say A has n_1 tuples and B n_2 tuples
- C will have $n_1 * n_2$ tuples
- Note it may be the case $t[ID_A] \neq t[ID_b]$
- What tuples appear in C
- Still each possible pair of tuples (one from A, and one from B).

Imagine we had another table on top of our pet table that represented how different pettypes needed to be kept (called PetTraits)

petType	liveType
Dog	Land
Cat	Land
Fish	Water

The Cartesian-Product Operation

The Cartesian product of Pets and PetTraits is

petID	petType	owner	dwelling	petType	liveType
1	Dog	John	Rent	Dog	Land
1	Dog	John	Rent	Cat	Land
1	Dog	John	Rent	Fish	Water
2	Cat	John	Rent	Dog	Land
2	Cat	John	Rent	Cat	Land
2	Cat	John	Rent	Fish	Water
3	Fish	Sarah	Own	Dog	Land
3	Fish	Sarah	Own	Cat	Land
3	Fish	Sarah	Own	Fish	Water
4	Dog	Michael	Rent	Dog	Land
4	Dog	Michael	Rent	Cat	Land
4	Dog	Michael	Rent	Fish	Water
5	Cat	Michael	Rent	Dog	Land
5	Cat	Michael	Rent	Cat	Land
5	Cat	Michael	Rent	Fish	Water

- Notice anything off about this table?
- It contains tuples that don't exist in reality
- How do we deal with this?

- Naming schema:
- If an attribute name in *r* and *s* match, attach the name of the relation to the attribute(s) with duplicates
- petID, petType, owner, dwelling, petType, liveType
- Changes to: petID, Pets.petType, owner, dwelling, PetTraits.petType liveType

- We have tuples for which $t[Pets.petType] \neq t[PetTraits.petType]$
- At the same time, there are tuples that match!

- We have tuples for which $t[Pets.petType] \neq t[PetTraits.petType]$
- At the same time, there are tuples that match!

- We have tuples for which $t[Pets.petType] \neq t[PetTraits.petType]$
- At the same time, there are tuples that match!
- Lets look closer

petID	Pets.petType	owner	dwelling	PetTraits.petType	liveType
1	Dog	John	Rent	Dog	Land
1	Dog	John	Rent	Cat	Land
1	Dog	John	Rent	Fish	Water
2	Cat	John	Rent	Dog	Land
2	Cat	John	Rent	Cat	Land
2	Cat	John	Rent	Fish	Water
3	Fish	Sarah	Own	Dog	Land
3	Fish	Sarah	Own	Cat	Land
3	Fish	Sarah	Own	Fish	Water
4	Dog	Michael	Rent	Dog	Land
4	Dog	Michael	Rent	Cat	Land
4	Dog	Michael	Rent	Fish	Water
5	Cat	Michael	Rent	Dog	Land
5	Cat	Michael	Rent	Cat	Land
5	Cat	Michael	Rent	Fish	Water ³⁰

- We have instances where Pets.petType matches PetTraits.petType
- We can use the select operator to refine our table to get rid of the pesky errors
- σ_{Pets.petType=PetTraits.petType}(Pets × PetTraits)

petID	petType	owner	dwelling	petType	liveType
1	Dog	John	Rent	Dog	Land
2	Cat	John	Rent	Cat	Land
3	Fish	Sarah	Own	Fish	Water
4	Dog	Michael	Rent	Dog	Land
5	Cat	Michael	Rent	Cat	Land
6	Fish	Emily	Own	Fish	Water

- We may, at times, want to rename attributes in a table
- For example, upon combining tables, we may worry that we will produce duplicate attribute names
- This could create ambiguity
- Forbidden

- $\bullet\,$ For a relational-algebra expression E, we may use ρ for renaming
- $\rho_x(E)$
- $\bullet\,$ returns the results of E under the name $\times\,$
- Assume E has arity n.
- Perform $\rho_{x(A_1,A_2,...A_n)}(E)$
- Attributes in E are now $A_1, A_2, \dots A_n$

- Consider the following query
- "What is the highest salary in the University"

The Rename Operator: Example 2

Table 4: Instructor Relation

ID	NAME	DEPT	SALARY
10101	Srinivasan	CS	98822.97
12121	Wu	Finance	92298.75
15151	Mozart	Music	99473.86
22222	Einstein	Physics	98718.90
32343	El Said	History	95757.29
33456	Gold	Phyics	97907.41
45565	Katz	CS	96998.25
58583	Califieri	History	90743.02
76543	Singh	Finance	95514.52
76766	Crick	CS	97777.23
83821	Brandt	BIO	96493.92
98345	Kim	Enig	91779.37

- One strategy here is as follows:
 - Combine the instructor table with itself via a Cartesian product
 - This will produce a table with 144 tuples and 8 attributes (duplicates)
 - We can then compare the two salaries in any tuple, but can only do so of the columns are unambiguous.

- We use the rename operator to remove ambiguity
- $\Pi_{\text{salary}}(\sigma_{\text{salary} < b. \text{salary}}(instructor \times \rho_b(instructor)))$

- We use the rename operator to remove ambiguity
- $\Pi_{\text{salary}}(\sigma_{\text{salary} < b. \text{salary}}(instructor \times \rho_b(instructor)))$

- We use the rename operator to remove ambiguity
- $\Pi_{\text{salary}}(\sigma_{\text{salary}< b.\text{salary}}(instructor \times \rho_b(instructor)))$
- This query will select all tuples for which salary is less than the highest salary

- Of course, this will give us the 11 instructors who earn LESS than the highest
- What can we do?
- Set subtraction!

 $\Pi_{salary}(instructor) - \Pi_{salary}(\sigma_{salary < b. salary}(instructor \times \rho_b(instructor)))$

• The result is the set of all instructors minus the set of instructors earning less than the highest, which will give us the highest salary.

- Consider two entities A and B
- Set intersection is $A \cap B$
- Same restrictions on unions apply!

- A useful equivalence result for set intersection comes from set difference
- $A \cap B = A (A B)$
- Set intersection is most often used as a shortcut for the above calculation

- We were able to combine two relations with a Cartesian product before
- But...when we did it...it was kind of taxing!
- This is common operation, calls for a short cut

- 🖂
- Natural join forms of a Cartesian product, performs a selection forcing equality on those attributes that appear in both relation schemas, and removes duplicate attributes

- Consider two relations r(R) and s(S). The natural join of r and s, denoted by r ⋈ s is a schema on R ∪ S defined as
- $r \bowtie s = \prod_{R \cup S} (\sigma_{r,A_1=s,A_1 \land r,A_2=s,A_2 \land \dots r,A_n=s,A_n} (r \times s)$ where $R \cap S = \{A_1, A_2, \dots A_n\}$
- Further note that if $R \cap S = \emptyset$ then $r \bowtie s = r \times s$

Consider three different relations

- Course(course_id, students)
- Instructor (ID, name, dept_name, salary)
- Teaches (ID, course_id, sec_id, semester, year)

Consider three different relations

- Course(course_id, students)
- Instructor (ID, name, dept_name, salary)
- Teaches (ID, course_id, sec_id, semester, year)
- (instructor \bowtie teaches) \bowtie course = instructor \bowtie (teaches \bowtie course)
- The Natural join is associative

- The θ join is a variant of the natural join that allows us to combine a selection and a Cartesian product into a single operation
- Consider relations r(R) and s(S), and let θ be a predicate on the attributes in the schema R ∪ S.
- The θ join operation $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$

Example of Theta Join

Let's consider two tables:

Students

StudentID	Name	Age
1	Alice	20
2	Bob	22
3	Carol	21

Courses

CourseID	CourseName	Instructor
101	Math 101	John Doe
102	English 101	Jane Smith
103	History 101	John Doe

We want to find students who are enrolled in courses taught by the instructor with the name 'John Doe.'

 $\mathsf{Result} = \mathsf{Students} \bowtie_{\mathsf{Instructor}='\mathsf{John}\ \mathsf{Doe'}} \mathsf{Courses}$

The result would include students enrolled in courses taught by 'John Doe.'

Result

StudentID	Name	Age	CourseID	CourseName
1	Alice	20	101	Math 101
3	Carol	21	103	History 101

- There are situations where some information doesn't exist or may not exist yet
- NULL value: an as yet unknown data value within a table column

- There are situations where some information doesn't exist or may not exist yet
- NULL value: an as yet unknown data value within a table column

- NULL values also create a new information content of 1(NULL = TRUE)
- We therefore have to leave behind binary logic in which any statement is either true or false

• Lets look at an example: we want to know the set of employees that live in Kentucky or who do not live in Kentucky

E#	Name	Street	City
1	John Doe	123 Main St	New York
2	Jane Smith	456 Elm St	NULL
3	Bob Johnson	789 Oak St	Los Angeles
4	Alice Brown	101 Pine St	NULL

 $\Pi_{Name}\left(\sigma_{City=Lexington}\right) \cup \Pi_{Name}\left(\sigma_{City\neq Lexington}\right)$

E#	Name	Street	City
1	John Doe	123 Main St	New York
3	Bob Johnson	789 Oak St	Los Angeles

- This defies the conventional logic that the union of employees who live in Lexington with its complement (the employs who do not live in Lexington) should be the complete set of employees
- Sentential logic with the values of TRUE, FALSE, and UKNOWN is commonly called three valued logic
- Since this practically makes interpretation of results difficult, we avoid these values when we can

- Sometimes a default is used
- In SQL, we would use the function COALESE(X,Y), which will replace unknown X with Y

- The outer-join operation is an extension of the join operation to deal with missing information
- Consider the following relational schema
- Instructor(ID, Name, dept_name)
- Teaches(ID, course_id, sec_id, semester, year)
- Lets say not every teacher has a course

ID	CourseID	Semester	year
10101	CS101	fall	2010
10101	CS315	fall	2010
10101	CS347	spring	2009
12121	Fin201	spring	2009

ID	NAME	DEPT	SALARY
10101	Srinivasan	CS	90542.86
12121	Wu	Finance	95024.65
15151	Gold	Music	97595.49

• We will lose information if we attempt to join, because Gold isn't teaching these courses

- We will lose information if we attempt to join, because Gold isn't teaching these courses
- Outer joins will allow us to preserve tuples that would be lost in a join by creating tuples in the result with null values

- We will lose information if we attempt to join, because Gold isn't teaching these courses
- Outer joins will allow us to preserve tuples that would be lost in a join by creating tuples in the result with null values
- Similar to a natural join

• Left outer join (▷)

- Left outer join (▷)
- Right outer join (<

- Left outer join (▷)
- Right outer join (<>>>)
- Right is symmetric to left

- R ⋈ S
- Take all tuples in the left relation (R) that do not match with any tuple in the right relation (S), and pad them null values

- R ⋈ S
- Take all tuples in the left relation (R) that do not match with any tuple in the right relation (S), and pad them null values
- Should there be any tuples from S that do not match with R, pad with null values
Instructor DM Teaches

ID	NAME	DEPT	SALARY	CourseID	Semester	year
10101	Srinivasan	CS	90542.86	CS101	fall	2010
10101	Srinivasan	CS	90542.86	CS315	fall	2010
10101	Srinivasan	CS	90542.86	CS347	spring	2009
12121	Wu	Finance	95024.65	Fin201	spring	2009
15151	Gold	Music	97595.49			

 Full outer join (▷<) does both a right and left outer join, padding tuples from both ends • It is interesting to note that outerjoin operations can be expressed as basic relational algebra operations

• It is interesting to note that outerjoin operations can be expressed as basic relational algebra operations

$$(r \bowtie s) \cup (r - \prod_R (r \bowtie s)) \times \{(null, ...null)\}$$

• We may generalize the projection operator by allowing for operations such as arithmetic and string functions to be applied

- We may generalize the projection operator by allowing for operations such as arithmetic and string functions to be applied
- $\Pi_{F_1,F_2,\ldots,F_n}(E)$ (where F_i are functions)

- We may generalize the projection operator by allowing for operations such as arithmetic and string functions to be applied
- $\Pi_{F_1,F_2,\ldots,F_n}(E)$ (where F_i are functions)
- $\Pi_{salary*\frac{1}{12}}$

• Aggregation functions (*G*) take a collection of values and return a single value as a result

- Aggregation functions (G) take a collection of values and return a single value as a result
- count, max, sum, average, min

- Aggregation functions (*G*) take a collection of values and return a single value as a result
- count, max, sum, average, min
- Gsum(salary)(instructor)

• Sometimes we may wish to only factor in distinct observations

- Sometimes we may wish to only factor in distinct observations
- count-distinctID

- Sometimes we may wish to only factor in distinct observations
- count-distinctID
- Other times we may wish to apply aggregation to a group of sets of tuples

- Sometimes we may wish to only factor in distinct observations
- count-distinctID
- Other times we may wish to apply aggregation to a group of sets of tuples
- dept_name $\mathcal{G}_{average(salary)}(instructor)$

•

• A more general expression is

 $_{G_1,G_2,\ldots G_n}\mathcal{G}_{F_1(A_1),F_2(A_2),\ldots F_m(A_m)}(E)$

$$_{G_1,G_2,\ldots G_n}\mathcal{G}_{F_1(A_1),F_2(A_2),\ldots F_m(A_m)}(E)$$

 The collection {G₁, G₂,...G_n} ∈ G is a list of grouping attributes (department name)

 $_{G_1,G_2,\ldots G_n}\mathcal{G}_{F_1(A_1),F_2(A_2),\ldots F_m(A_m)}(E)$

- The collection {G₁, G₂,...G_n} ∈ G is a list of grouping attributes (department name)
- Each F_i is an aggregation function

$$_{G_1,G_2,\ldots G_n}\mathcal{G}_{F_1(A_1),F_2(A_2),\ldots F_m(A_m)}(E)$$

- The collection {G₁, G₂,...G_n} ∈ G is a list of grouping attributes (department name)
- Each F_i is an aggregation function
- Each A_i is an attribute name

• Step1 $\leftarrow R \times S$

- Step1 $\leftarrow R \times S$
- Step2 $\leftarrow \sigma_{r.A_1=s.A_1 \land r.A_2=s.A_2 \land \ldots r.A_n=s.A_n}(Step1)$

- Step1 $\leftarrow R \times S$
- Step2 $\leftarrow \sigma_{r.A_1=s.A_1 \land r.A_2=s.A_2 \land \dots r.A_n=s.A_n}(Step1)$
- result $\leftarrow \Pi_{R\cup S}(Step2)$

- Step1 $\leftarrow R \times S$
- Step2 $\leftarrow \sigma_{r.A_1=s.A_1 \land r.A_2=s.A_2 \land \dots r.A_n=s.A_n}(Step1)$
- result $\leftarrow \Pi_{R\cup S}(Step2)$
- We rewrote the definition of ⋈ in steps using the assignment operator

- Break it into smaller questions
- Think about the sequence of how things must happen
- The very first steps are the ones that are going to be buried the deepest in parentheses

• Given:

- FoodItems(item, type, calories)
- *Ingredients*(fooditem, recipe, ounces)
- stock(item, stock)
- Task: Find names of all recipes that contain meat products (food items of type "Meat").
- $\Pi_{\text{recipe}}(\sigma_{\text{type}='\text{Meat'}}(FoodItems) \bowtie_{fooditem=item} Ingredients)$