
Welcome!

1

Goal for the Day

• Basic Schema Definition of SQL

• Basic Structure of SQL Queries

• Aggregation functions

• Nested Subqueries

• Modification of Database

2

Motivation

• Last week, we discussed the mathematical and analytical

background that built DBMS

• We also discussed how to organize tables to make querying effective

• Now, we get into the actually querying

• That was the prequel to SQL

3

Overview of SQL

• Originated by IBM as Sequel

• Has since been standardized

• There are several parts to SQL

4

Overview of SQL

• Data-definition language (DDL): SQL provides commands for

defining relation schemas, deleting relations, and modifying relation

schemas

• Data-manipulation language (DML) the ability to query information

from the database and to insert tuples into, delete tuples from, and

modify tuples in the database

• Integrity: SQL includes commands for specifying integrity

constraints that the data stored in the database must satisfy.

Updates that violate the constraints are not allowed

5

Overview of SQL

• View definition: The SQL DDL includes commands for defining

views

• Transaction control : SQL includes commands for specifying the

beginning and ending of transactions

• Embedded and Dynamic SQL Embedded and dynamic SQL define

how SQL statements can be embedded within general-purpose

programming languages, such as C, C++, and Java

• Authorization: SQL DDL includes commands for specifying access

rights to relations and views

6

SQL Data Definition

• The set of relations in a database must be specified to the system by

means of a DDL

• The SQL DDL allows specifications of relations and also information

about each relation including

• schema, types of values, integrity constraints, indices to be

maintained, security and authorization, physical storage structure

7

Basic Types

SQL supports a variety of built-in types, including

• char(n) fixed-length character string with user-specified length n

• varchar(n) a variable-length character string with user-specified

maximum length n (recommended)

• An integer (finite subset)

• smallint small integer

• numeric(p, d) fixed point number with p digits and d digits allowed

to the right of a decimal

• real, double precision: floating point and double precision

floating-point numbers with machine-dependent precision

• float(n) a floating-point number, with precision of at least n digits

• Each type can be NULL

8

Basic Schema Definition

We define a SQL relation by using the create table command.

9

Basic Schema Definition

create table r

(A1, D1,

... ...,

An Dn,

integrity-constraint1
...

integrity-constraintk);

10

Basic Schema Definition

Many integrity constraints are allowed

• primary key (Aj1,Aj2, ...Ajm)

• primary keys must be non-null and unique

• optional, but good idea to keep track of them

11

Basic Schema Definition

Many integrity constraints are allowed

• foreign key (Ak1,Ak2, ...Akl)

• foreign keys correspond to the primary keys of another relation

• Without this constraint, you may end up with tuples that don’t

relate back to anything

12

Basic Schema Definition

Many integrity constraints are allowed

• not null

• forces a value for each member of the attribute

13

Basic Schema Definition

create table department

(dept name varchar(20),

building varchar(15),

budget numeric(12,2),

primary key(dept name));

14

Basic Schema Definition

create table r

(A1 D1,

A2 D2,

A3 D3,

A4 (D4));

15

Basic Schema Definition

• A newly created table will be empty

• We use the insert command to to add data to it

• insert into instructor

values(10211, ‘Smith’, ‘Biology’, 66000);

• We can delete from a relation (delete from) or drop the relation

all together (drop table)

• We can add relations with alter table like alter table r add A,

D

16

Basic Structure of Queries

• Three main clauses: select, from, and where

• Bad accident of history: select in relational algebra is the same as

WHERE in SQL!

• select in SQL is like Π in relational algebra

17

Basic Structure of Queries

Table 1: Teacher

Name Teacher ID Salary

John Smith 101 50, 000

Jane Doe 102 55, 000

Mark Johnson 103 48, 000

18

Basic Structure of Queries

select Name

from teacher

Table 2: Teacher

Name

John Smith

Jane Doe

Mark Johnson

Or

select distinct Name

from teacher

Or

select all Name

from teacher

all is the default so we don’t need to say it
19

Basic Structure of Queries

We can include aritmetic operations in a select statement as follows:

select Name, Teacher ID, Salary*1.1

from teacher

Name Teacher ID Salary

John Smith 101 55, 000

Jane Doe 102 60, 500

Mark Johnson 103 52, 800

20

Basic Structure of Queries

A where clause is just like σ

select Name, Teacher ID, Salary

from teacher

where Salary > 50000

Name Teacher ID Salary

Jane Doe 102 55, 000

SQL allows the use of logical connectives and, or and not in a where

clause.

Also, <,<=, >,>=,=, <>

21

Basic Structure of Queries

How to think about it

• select: lists the attributes desired in the result of the query

• from: lists the relations to be accessed to evaluate the query

• where: a predicate involving attributes of the relation in the from

clause

• Generally easiest to understand a query by reading from first, then

where, and then select

22

Queries on Multiple Relations

We can generalize a generic query as follows

select A1, A2,...,An from r1, r2,...,rm where P;

Each Ai is an attribute, each ri a relation, and P is a predicate with

default TRUE.

23

Queries on Multiple Relations

• Consider the schema

• Department(dept name, building, budget)

• Instructor(ID, name, dept name, salary)

• What if we wanted to know the names of all instructors, their

department name, and the building of their department?

• We need to combine relations

• We need to make sure each tuple in the instructor relation is

matched with the tuple in the department relation whose dept name

value matches the dept name in the instructor relation

24

Queries on Multiple Relations

select name, instructor.dept name, building

from instructor, department

where instructor.dept name=department.dept name

25

Queries on Multiple Relations

• from defines a Cartesian product of the relations listed in the clause

• Recall our relational algebra example with Pets, or our lossless join

dependency example with wine to think about what Cartesian

products look like

• Instructor × Department =

• (Department.dept name, Department.building, Department.budget,

Instructor.ID, Instructor.name, Instructor.dept name,

Instructor.salary)

• (Department.dept name, building, budget, ID, name,

Instructor.dept name, salary)

26

Quick Question

Consider the query

select p.a1

from p, r1, r2

where p.a1=r1.a1 or p.a1=r2.a1

Under what conditions does the query select values of p.a1 that are

either in r1 or in r2. Hint: consider the case where either ri is empty.

27

Quick Answer

• The query selects values of p.a1 that are equal to some value of

r1a1 or r2a2 if and only if both are non-empty.

• Why? Recall A× ∅ = ∅

28

Queries on Multiple Relations

• where restricts our attention to combinations that meet a certain

predicate

• In our example, we only care about combinations of Instructor and

Department where the instructor was actually within the department

• Hence the argument

• where instructor.dept name=department.dept name

29

Queries on Multiple Relations

• Just like in relational algebra, we may not want to have to specify a

where clause each time we want to combine relations because we are

concerned about anomalies from the Cartesian product

• SQL supports the natural join

• Instead of

select name

from instructor, department

where instructor.dept name=department.dept name

• select

from instructor natural join department

30

Queries on Multiple Relations

Consider the schema

Instructor(ID, name, dept name, salary)

Teaches(ID, course id, sec id)

Course(course id, title, dept name, credits)

Now consider the following queries

• select name

from instructor natural join teaches, course

where teaches.course id=course.course id

• select name

from instructor natural join teachesnatural join course

Do they produce the same result?

31

Queries on Multiple Relations

No

• The natural join of instructor and teaches will contain the attributes

(ID, name, dept name, salary, course id, sec id)

• Course shares the attributes dept name and course id

• The natural join will force the Course.dept name and

Course.course id to match the natural join of instructor and teaches

• The Cartesian product will not

• The second query will omit names of instructors who teach courses

outside of their department

• We may not want these omitted!

32

Queries on Multiple Relations

• We can specify exactly which columns should be equated to write

better join queries

• select name

from (instructor natural join teaches) join course using

(course id)

• join...using requires a list of attribute names to be specified

• join..using will allow teaches.dept name and course.dept name to

be different

33

Queries on Multiple Relations

• Consider any two relations r1 and r2 with attributes Ai i ∈ {1, 2, 3}
so A1,A2,A3 and r1(A1,A2,A3) and r2(A1,A2,A3)

• r1 join r2 using (A1, A2) will require a pair of tuples t1 from r1
and t2 from r2 to match if t1.A1 = t2.A2 ∧ t1.A2 = t2.A2.

• The natural join would require a third equality t1.A3 = t2.A3

34

Other Basic Operations

• Rename

• String

• Attribute specification select

• Ordering

• Where clause predicates

35

Rename

We may need to change names for many reasons

• Two relations in the from clause may have the same name,

producing duplicates

• If we use an arithmetic operation in our select clause, we won’t have

a name, and need to assign one

• We may want to have an easier to read name

• old-name as new-name

36

Rename

• select name as instructor name, course id from instructor, teaches

where instructor.ID=teaches.ID

• select T.name, S.course id

from instructor as T, teaches as S

where T.ID = S.ID

• select distinct T.name

instructor as T, instructor as S

where T.salary > S.salary and S.dept name = ‘Biology’

• Common names for what we did with T and S are correlation name,

table alias, tuple variable

37

String Operations

• Strings are enclosed in single quotes ‘Computer’

• Standard for equality is case sensitivity

• upper and s change the cases

• trim remove space

• The character matches any char

• % the char matches any substring

38

String Operations

• ’Intro%’ matches any string beginning with “Intro”

• %Comp% matches any string containing “Comp” as a substring

• ‘ ’ any string of three chars

• ‘ %’ any string of at least three chars

39

String Operations

Find the names of all departments whose building names includes the

substring ‘Watson’

select dept name

from department

where building like ‘%Watson%’

40

String Operations

• ’Intro%’ matches any string beginning with “Intro”

• %Comp% matches any string containing “Comp” as a substring

• ‘ ’ any string of three chars

• ‘ %’ any string of at least three chars

41

String Operations

• Escape can be used to deal with special chars

• like ‘ab \%cd% escape ‘\’ matches all strings with “ab%cd”

42

Attribute Specification

• What if we want all attributes from a relation?

• We argue select∗

43

Order Display

• order by lets us list items in ascending order

• Specify desc for descending order

• We can combine them

• select∗

from instructor

order by

salary desc, name asc

44

Where Clause Predicates

• Say we want people with salaries between 35,000 and 42,000

• SQL supports a between comparison to make this easier

• select name

from instructor

where salary between 35000 and 42000

• [select] name

from instructor

where salary <= 42000 and salary >= 35000

• we could also say not between

45

Where Clause Predicates

• Say we want people with salaries between 35,000 and 42,000

• SQL supports a between comparison to make this easier

• select name

from instructor

where salary between 35000 and 42000

• select name

from instructor

where salary <= 42000 and salary >= 35000

46

Where Clause Predicates

• We can compare sets of values (v1, v2, ..., vn)

• Ordering is defined lexiographically

• (a1, a2) <= (b1, b2) is true when a1 <= b1 and a2 <= b2

• select name, course id

from instructors, teaches

where (instructor.ID, dept name) = (teaches.ID, ’Biology’)

• Result: instructor names and the courses they taught for all

instructors in the Bio department who have taught some course

47

Set Operators

For all set operators, duplicates are automatically deleted, so we must

declare all if we don’t want this to happen

• Union operator

• Intersect operator

• Except operator

48

Union operator

Remember: duplicates automatically deleted. If we don’t want this

behavior, add ‘all’ after the set clause

(select course_id

from section

where semester = ‘Fall’ and year = 2009)

union

(select course_id

from section

where semester = ‘Spring’ and year = 2010)

49

Intersect operator

Remember: duplicates automatically deleted. If we don’t want this

behavior, add ‘all’ after the set clause

(select course_id

from section

where semester = ‘Fall’ and year = 2009)

intersect

(select course_id

from section

where semester = ‘Spring’ and year = 2010)

50

Except operator

Remember: duplicates automatically deleted. If we don’t want this

behavior, add ‘all’ after the set clause

(select course_id

from section

where semester = ‘Fall’ and year = 2009)

except

(select course_id

from section

where semester = ‘Spring’ and year = 2010)

51

Aggregate Functions

SQL offers five built in aggregating functions

• Average: avg

• Minimum: min

• Maximum: max

• Total: sum

• Count: count

sum and avg only accept numbers as inputs, but others can use strings or

nonnumeric data

52

Aggregate Functions

• select avg (salary)

from instructor

where dept name = ‘Comp.Sci’

• select avg (salary) as avg salary

from instructor

where dept name = ‘Comp.Sci’

53

Aggregate Functions

• The default is to include duplicates (think about calculating

averages)

• We can override this with distinct, which sometimes we must do

for our result to be meaningful

• select count (distinct ID)

from teaches

where semester = ‘Spring’ and year = 2010

• We can use count(∗) to count all tuples in a relation

54

Aggregate Functions

Sometimes we would like to apply aggregate functions to a group of sets

of tuples

• we use the group by clause

• Anything after group by is put into a group

• “Find the average salary in each department”

• select dept name, avg(salary) as salary

from instructor

group by dept name

• You can think of group by as always being there, but the default

being that the tuple is a group

55

Aggregate Functions

Instructor(ID, name, dept name, salary)

Teaches(ID, course id, sec id), semester, year)

Course(course id, title, dept name, credits)

• Find the number of instructors in each department who teach a

course in the Spring 2010 semester

• What do we need to do?

56

Aggregate Functions

Find the number of instructors in each department who teach a course in

the Spring 2010 semester

• Start with our from statement

• Do we have enough information from one relation alone?

57

Aggregate Functions

Find the number of instructors in each department who teach a course in

the Spring 2010 semester

• No, we need instructor and teaches

• How do we want to combine them?

• from instructor natural join teaches

58

Aggregate Functions

Find the number of instructors in each department who teach a course in

the Spring 2010 semester

• Think about our where statement

• Will we have to broad of a relation?

59

Aggregate Functions

Find the number of instructors in each department who teach a course in

the Spring 2010 semester

• Think about our where statement

• Will we have to broad of a relation?

60

Aggregate Functions

Find the number of instructors in each department who teach a course in

the Spring 2010 semester

• Yes, let’s make it smaller

• where semester = ‘Spring’ and year = 2010

61

Aggregate Functions

Find the number of instructors in each department who teach a course in

the Spring 2010 semester

• Think about grouping

• Do we treat this as just one group or do we want something more

specific?

62

Aggregate Functions

Find the number of instructors in each department who teach a course in

the Spring 2010 semester

• More specific

• group by dept name

63

Aggregate Functions

So far we have from instructor natural join teaches

where semester = ‘Spring’ and year = 2010

group by dept name

What’s missing?

64

Aggregate Functions

Find the number of instructors in each department who teach a course in

the Spring 2010 semester

• Let’s apply an aggregation function and have it print out without an

arbitrary name

• What will we say?

65

Aggregate Functions

• select dept name, count distinct(ID) as instructor count

66

Aggregate Functions

select dept name, count distinct(ID) as instructor count

from instructor natural join teaches

where semester = ‘Spring’ and year = 2010

group by dept name

67

Aggregate Functions

• Important note: when aggregating, the select statement should only

include the grouping attribute and the aggregated attribute (the one

having the function performed on it)

• Otherwise, SQL will treat the query as an error

• Example: select dept name, ID, avg(salary)

from instructor

group by dept name

• What is wrong?

68

Aggregate Functions

Another great clause for aggregation, having

• What if we wanted to make a statement that applies to entire

groups?

• Ex: We only care about departments within a particular field (STEM

or Humanities) or with a particular budget size

• We use having, which will apply a predicate after groups are formed

69

Example

• What is the average salary among departments where the average

salary is greater than 42,000?

• select dept name, avg(salary) as avg salary

from instructor

group by dept name

having avg(salary) > 42000

• Having clause can only include attributes being grouped or

aggregated, or the query is erroneous

70

Example

Consider the schema

• Takes(ID, course id, sec id, semester, year, grade)

• Course(course id, title, dept name, credits)

For each course section offered in 2009, find the average total credits

(tot cred) of all students enrolled in the section, if the section had at

least two students

71

Example

Question: For each course section offered in 2009, find the

average total credits (tot cred) of all students enrolled in the

section, if the section had at least two students

Questions we ask ourselves to write the query?

• Does any one relation give us the answer?

• Do we need to reduce the number of tuples we are looking at?

72

Example

Question: For each course section offered in 2009, find the

average total credits (tot cred) of all students enrolled in the

section, if the section had at least two students

• No. from takes natural join student

• Yes. where year = 2009

73

Example

Question: For each course section offered in 2009, find the

average total credits (tot cred) of all students enrolled in the

section, if the section had at least two students

• How are we grouping?

• What are our group conditions?

74

Example

Question: For each course section offered in 2009, find the

average total credits (tot cred) of all students enrolled in the

section, if the section had at least two students

• group by course id

• having count(ID) >= 2

75

Example

Question: For each course section offered in 2009, find the

average total credits (tot cred) of all students enrolled in the

section, if the section had at least two students

• What are we trying to print?

• select course id, avg(total cred) as avg cred

76

Example

Our final query:

select course_id, avg(total_cred) as avg_cred

from takes natural join student

where year = 2009

group by course_id, seemster, year, sec_id

having count(ID)>=2

77

Aggregation with Null Values

• The SQL standard says the function ignores null values

• All aggregation functions except count(∗) ignore null values

• Count will include the null value because it will want to add up the

total number of tuples in a group

78

Nested Subqueries

We can nest a query inside a larger query. By nesting, we can combing

questions to increase our efficiency. We can use nested subqueries for

several things

• Set Membership

• Set Comparison

• Testing for Empty Relations

• Testing for Duplicates

• Augmenting from and with clauses

79

Nested Subqueries

• A subquery is a select-from-where expression nested in another

query.

The nesting can be done in the following SQL query:

select A1, A2, . . . , An

from r1, r2, . . . , rm

where P

as follows:

• From clause: ri can be replaced by any valid subquery.

• Where clause: P can be replaced with an expression of the form:

B < operation > (subquery)

where B is an attribute and <operation> is to be defined later.

• Select clause: Ai can be replaced by a subquery that generates a

single value.
80

Nested Subqueries

• Say we want to know what courses were both taught in the fall and

the spring in years 2017 and 2018 respectively

• One way of doing this is with set intersection

• Another way is to use a nested subquery

81

Example: What courses were both taught in the fall and the

spring in years 2017 and 2018

• Step 1: Write our nested query

• Step 2: Write the outer query

82

Example: What courses were both taught in the fall and the

spring in years 2017 and 2018

• Here, we want courses that appear in both the fall and the spring

• We can obtain list 1, and say in a larger query we want a list that

includes list 1 as a condition

• In this instance, it would be generating the list of courses in the

spring 2018, and then saying we want the list of courses in the fall in

2017

83

Example: What courses were both taught in the fall and the

spring in years 2017 and 2018

• What is our first query?

• (select course id

from section

where semester = ’Spring’ and year = 2018)

84

Example: What courses were both taught in the fall and the

spring in years 2017 and 2018

• What is our first query?

• (select course id

from section

where semester = ’Spring’ and year = 2018)

84

Example: What courses were both taught in the fall and the

spring in years 2017 and 2018

• What query goes on the outside?

• select distinct course id

from section

where semester = ’Fall’ and year = 2017

85

Example: What courses were both taught in the fall and the

spring in years 2017 and 2018

• What query goes on the outside?

• select distinct course id

from section

where semester = ’Fall’ and year = 2017

85

Example: What courses were both taught in the fall and the

spring in years 2017 and 2018

• Let’s connect them with and course id in

86

Example: What courses were both taught in the fall and the

spring in years 2017 and 2018

select distinct course id

from section

where semester = ’Fall’ and year = 2017 and

course id in (select course id

from section

where semester = ’Spring’ and year = 2018);

87

Example 2: Name all instructors whose name is neither

“Mozart” nor “Einstein”

• We can also use in and not in to test set membership

select distinct name

from instructor

where name not in (’Mozart’, ’Einstein’);

88

Find the total number of (distinct) students who have taken

course sections taught by the instructor with ID 10101

• Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features.

select count(distinct ID)

from takes

where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year

from teaches

where teaches.ID = 10101);

89

Set Comparison

Earlier, we wanted to know the names of all instructors whose salary is

greater than at least one instructor in the Biology department. We wrote

the following code to do so:

select distinct T.name

from instructor as T, instructor as S

where T.Salary > S.salary and S.dept name = ’Biology’;

• Instead, we can use some

• Some indicates set membership

90

Set Comparison

• (f < comp > t)somer ←→ ∃t ∈ r : (f < comp > t)

• (f < comp > t) ∈ {<,>,≤,≥,=, ̸=}
• You can think about it as at least, there only needs to exist a t

91

Set Comparison

• 5 < some{0, 5, 6}
• 5 < some{0, 5}
• 5 = some{0, 5}
• 5 ̸= some{0, 5}

92

Set Comparison

• 5 < some{0, 5, 6} True
• 5 < some{0, 5} False
• 5 = some{0, 5} True
• 5 ̸= some{0, 5} True
• (= some) ≡ in

• ̸= some ̸≡ not in

93

Set Comparison

We may also use an all clause instead of the some clause

• (f < comp > t)somer
∀←→ t ∈ r : (f < comp > t)

• The statement must be true for all t, rather just at least 1 t

94

Set Comparison

• 5 < all{0, 5, 6} False
• 5 < all{6, 10} True
• 5 = all{0, 5} False
• 5 ̸= all{4, 6} True
• (= some) ≡ in

• ̸= all ≡ not in

• = all ̸≡ in

95

Tests for Empty Relations

• exists returns the value true of the subquery is nonempty

96

Query: Courses in Both Fall 2017 and Spring 2018

SELECT course id

FROM section AS S

WHERE semester = ’Fall’ AND year = 2017 AND

EXISTS (SELECT ∗

FROM section AS T

WHERE semester = ’Spring’ AND year = 2018

AND S.course id = T.course id);

• Correlation Name: Variable S in the outer query.

• Correlated Subquery: The inner query.

97

Tests for Empty Relations

• We can write “relation A contains relation B” as “B except A”

98

Tests for Empty Relations

• A scoping rule applies: local definitions apply, and a local definition

can only be used locally

99

Example: Find all students who have taken all courses offered

in the Bio department

SELECT DISTINCT S.ID, S.name

FROM student AS S

WHERE NOT EXISTS (

SELECT course_id

FROM course

WHERE dept_name = ’Biology’

EXCEPT

SELECT T.course_id

FROM takes AS T

WHERE S.ID = T.ID

);

• X − Y = ∅ ⇐⇒ X ⊆ Y
100

Example: Find all students who have taken all courses offered

in the Bio department

• Outer query: all courses

• Inner query 1: the set of all courses offered in Biology

• Inner query 2: the set of all courses student S.ID has taken

• Overall, the query tests whether there exists a student who has

taken all courses in the biology department because it attempts to

see if the set of courses students has taken contains the set of all

biology classes

101

Example: Find all students who have taken all courses offered

in the Bio department

• Why is this the case?

• Let’s think back to set theory

• X − Y = ∅ ←→ X ⊆ Y

• We would only get nothing if everything in X is also in Y , and that

is the definition of subet.

102

Testing for Duplicate Tuples

We can test for whether a subquery has duplicate tuples in several ways.

One way, not widely implemented, is UNIQUE. Consider the question:

Find all courses that were offered at most once in 2009

select T.courseid

from course as T

where unique (select R.courseid

from section as R

where T.courseid=R.courseid

and R.year = 2017)

Unique formally tests if there are any two tuples t1 and t2 s.t. t1 = t2.

Test fails if any fields are null.

103

Testing for Duplicate Tuples

We can also do it this way:

select T.course id

from course as T

where 1 <= (select count(R.course id)

from section as R

where year = 2017 and T.course id=R.course id)

104

Subqueries in the From Clause

• We may not want to use the having clause

• select dept name, avg salary

from(select dept name, avg(salary) as avg salary

from instructor

group by dept name)

where avg salary > 42000

• SELECT dept name, avg salary

FROM(SELECT * FROM (

SELECT dept name, AVG(salary) as avg salary

FROM instructor

GROUP BY dept name

) AS dept avg)

where avg salary > 42000

105

The With Clause

• The with clause creates a temporary relation with definitions that

are only available to the queries within the with clause

• Find the department with the maximum budget

• with max budget (value) as

(select max(budget)

from department)

select dept name

from department, max budget

where budget = max budget.value

106

The With Clause

• We defined a new relation that was temporary, and that relation

selected the max budget value from departments. We named it

max budget

• Then, we selected department names from the relations department

and max budget, only looking at cases where the budget in

department as equal to the max we found in our nested query

• Our final result is then given

107

Finding Departments with Total Salary Above Average

• Let’s find all departments where the total salary is greater than the

average of the total salary at all departments.

108

Finding Departments with Total Salary Above Average

• We want to find departments where the total salary is greater than

the average of the total salary across all departments.

109

Step 1: Create ‘dept total‘ Table

dept_total (dept_name, value) as

(select dept_name, sum(salary)

from instructor

group by dept_name)

• This creates a table with department names and their total salaries.

• The ‘sum(salary)‘ is calculated for each department using the

‘GROUP BY‘ clause.

110

Step 2: Create ‘depttotalavg ‘Table

dept_total_avg(value) as

(select avg(value)

from dept_total)

• This creates a table with a single column containing the average of

the ‘value‘ column from the ‘dept total‘ table.

111

Step 3: Select Departments Above Average

select dept_name

from dept_total, dept_total_avg

where dept_total.value > dept_total_avg.value;

• Selects department names where the total salary (‘value‘ in

‘dept total‘) is greater than the average total salary (‘value‘ in

‘dept total avg‘).

112

Putting it all Together

• We want to find departments where the total salary is greater than

the average of the total salary across all departments.

with dept_total (dept_name, value) as

(select dept_name, sum(salary)

from instructor

group by dept_name),

dept_total_avg(value) as

(select avg(value)

from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value > dept_total_avg.value;

113

Scalar Subquery

Definition: A scalar subquery is used where a single value is expected.

• Example: List all departments along with the number of instructors

in each department.

select dept_name,

(select count(*)

from instructor

where department.dept_name = instructor.dept_name)

as num_instructors

from department;

• Note: Runtime error if the subquery returns more than one result

tuple.

114

Scalar Subquery

Definition: A scalar subquery is used where a single value is expected.

• Example: List all departments along with the number of instructors

in each department.

select dept_name,

(select count(*)

from instructor

where department.dept_name = instructor.dept_name)

as num_instructors

from department;

• Note: Runtime error if the subquery returns more than one result

tuple.

114

Scalar Subquery

Definition: A scalar subquery is used where a single value is expected.

• Example: List all departments along with the number of instructors

in each department.

select dept_name,

(select count(*)

from instructor

where department.dept_name = instructor.dept_name)

as num_instructors

from department;

• Note: Runtime error if the subquery returns more than one result

tuple.

114

Modification of the Database

• Deletion

• Insertion

• Update

115

Delete

• General Structure

delete from r

where P

P(t) finds all tuples t for which statement P is true

We delete whole tuples, not values within attributes

116

DELETE Statements

1. Delete All Instructors:

DELETE FROM instructor;

2. Delete Instructors from the Finance Department:

DELETE FROM instructor

WHERE dept_name = ’Finance’;

3. Delete Tuples for Instructors in Watson Building:

DELETE FROM instructor

WHERE dept_name IN (SELECT dept_name

FROM department

WHERE building = ’Watson’);

117

DELETE Statements

• Delete all instructors whose salary is less than the average salary of

instructors

• We must be careful to compute the average first, because it will

change as we delete

DELETE FROM instructor

WHERE salary < (SELECT AVG (salary)

FROM instructor);

118

Adding a Tuple to the Course Table

• We want to add a new tuple to the ‘course‘ table.

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

• Alternatively, we can use the explicit column list:

insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

119

Adding a Tuple to the Course Table

• We want to add a new tuple to the ‘course‘ table.

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

• Alternatively, we can use the explicit column list:

insert into course (course_id, title, dept_name, credits)

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

119

Adding a Tuple to the Student Table

• Now, let’s add a new tuple to the ‘student‘ table with ‘tot creds‘ set

to null.

insert into student

values (’3003’, ’Green’, ’Finance’, null);

• This SQL query inserts a new student with null total credits

(‘tot creds‘).

120

Adding a Tuple to the Student Table

• Now, let’s add a new tuple to the ‘student‘ table with ‘tot creds‘ set

to null.

insert into student

values (’3003’, ’Green’, ’Finance’, null);

• This SQL query inserts a new student with null total credits

(‘tot creds‘).

120

Inserting Students as Instructors

• We want to make each student in the Music department, who has

earned more than 144 credit hours, an instructor in the Music

department with a salary of 18,000.

insert into instructor

select ID, name, dept_name, 18000

from student

where dept_name = ’Music’ and total_cred > 144;

• This SQL query inserts students into the ‘instructor‘ table, assigning

a salary of 18,000.

• The condition ensures that only Music department students with

more than 144 credit hours are selected.

121

Inserting Students as Instructors

• We want to make each student in the Music department, who has

earned more than 144 credit hours, an instructor in the Music

department with a salary of 18,000.

insert into instructor

select ID, name, dept_name, 18000

from student

where dept_name = ’Music’ and total_cred > 144;

• This SQL query inserts students into the ‘instructor‘ table, assigning

a salary of 18,000.

• The condition ensures that only Music department students with

more than 144 credit hours are selected.

121

Inserting Students as Instructors

• We want to make each student in the Music department, who has

earned more than 144 credit hours, an instructor in the Music

department with a salary of 18,000.

insert into instructor

select ID, name, dept_name, 18000

from student

where dept_name = ’Music’ and total_cred > 144;

• This SQL query inserts students into the ‘instructor‘ table, assigning

a salary of 18,000.

• The condition ensures that only Music department students with

more than 144 credit hours are selected.

121

Updates

update instructor

set salary = case

when salary <= 100000 then salary * 1.05

else salary * 1.03

end

122

Updates

• We can use an update statement if we want to change the values of

some tupels without changing all values in the tuple

• Increase the salary by 5%

• update instructor

set salary = salary*1.05

• Say we wanted to do something more complicated: give a 3% raise

for people earning over 100000 and 5% otherwise

123

Updates

Using the case construct: general form

case

when pred_1 then result_1

when pred_2 then result_2

...

else result_0

end

In our example:

update instructor

set salary = case

when salary <= 100000 then salary*1.05

else salary*1.03

end

124

